切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2019, Vol. 05 ›› Issue (02) : 115 -119. doi: 10.3877/cma.j.issn.2096-1537.2019.02.007

所属专题: 文献

临床研究

电阻抗成像技术监测急性呼吸窘迫综合征患者呼气末正压滴定时局部机械能的临床应用
池熠1, 何怀武1, 袁思依1, 招展奇1, 隆云1,()   
  1. 1. 100730 中国医学科学院 北京协和医学院 北京协和医院重症医学科
  • 收稿日期:2019-03-14 出版日期:2019-05-28
  • 通信作者: 隆云

Application of regional mechanical power monitored by electrical impedance tomography during positive end-expiratory pressure titration in acute respiratory distress syndrome patients

Yi Chi1, Huaiwu He1, Siyi Yuan1, Zhanqi Zhao1, Yun Long1,()   

  1. 1. Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
  • Received:2019-03-14 Published:2019-05-28
  • Corresponding author: Yun Long
  • About author:
    Corresponding author: Long Yun, Email:
引用本文:

池熠, 何怀武, 袁思依, 招展奇, 隆云. 电阻抗成像技术监测急性呼吸窘迫综合征患者呼气末正压滴定时局部机械能的临床应用[J]. 中华重症医学电子杂志, 2019, 05(02): 115-119.

Yi Chi, Huaiwu He, Siyi Yuan, Zhanqi Zhao, Yun Long. Application of regional mechanical power monitored by electrical impedance tomography during positive end-expiratory pressure titration in acute respiratory distress syndrome patients[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2019, 05(02): 115-119.

目的

观察急性呼吸窘迫综合征(ARDS)患者呼气末正压(PEEP)滴定过程中的潮气分布和局部机械能。

方法

对2018年11月至2019年2月北京协和医院收入的10例接受有创机械通气的ARDS患者进行PEEP滴定(15~0 cmH2O,1 cmH2O=0.098 kPa),该过程中使用电阻抗成像(EIT)技术监测肺内从腹侧到背侧人为划分的4个"感兴趣区(ROI)"(ROI 1~2区代表非重力依赖区,ROI 3~4区代表重力依赖区)的局部潮气比例,并计算局部机械能大小。采用单因素方差分析比较不同PEEP水平下ROI 1~4区通气分布及机械能的差异。

结果

(1)随着PEEP从15 cmH2O递减至0 cmH2O,重力依赖区潮气比例下降,非重力依赖区潮气比例增加,且差异均有统计学意义(F=5.611、5.587,P均<0.001),潮气由重力依赖区向非重力依赖区分布。(2)随着PEEP从15 cmH2O递减至0 cmH2O,总机械能降低,且差异有统计学意义(F=19.601,P<0.001);而局部机械能在ROI 2~4区降低,且差异均有统计学意义(F=4.130,P=0.003;F=30.690,P<0.001;F=16.744,P<0.005),但在ROI 1区差异无统计学意义(F=0.460,P=0.804)。

结论

借助EIT技术能够监测ARDS患者PEEP滴定过程中的局部机械能。PEEP递减过程中,总体机械能降低,但局部机械能存在增加的可能性。局部机械能在PEEP设置中可能提供有用的信息。

Objective

To investigate regional gas distribution and regional mechanical power during positive end-expiratory pressure (PEEP) titration in acute respiratory distress syndrome (ARDS) patients using electrical impedance tomography (EIT).

Methods

Ten ARDS patients admitted to Peking Union Medical College Hospital from November 2018 to February 2019 and receiving invasive mechanical ventilation were studied. A descending PEEP trial (15-0 cmH2O, 1 cmH2O=0.098 kPa) in 3 cmH2O steps was monitored by EIT, with lung images divided into four ventral-to-dorsal horizontal regions of interest (ROIs) 1 and 2 represent non-dependent areas, while ROIs 3 and 4 represent dependent areas). Gas distributions in the four regions were recorded, with which regional mechanical powers in each region were calculated.

Results

With PEEP decreasing from 15 cmH2O to 0 cmH2O, tidal volumes significantly decreased in dependent areas (F=5.611, P<0.001), but significantly increased in non-dependent areas (F=5.587, P<0.001). Ventilation shifted from dorsal regions to ventral regions during the descending PEEP trial. With PEEP decreasing from 15 cmH2O to 0 cmH2O, global mechanical power decreased significantly (F=19.601, P<0.001); mechanical power decreased significantly in ROIs 2-4 (F=4.130, P=0.003; F=30.690, P<0.001; F=16.744, P<0.005) but did not change significantly in ROI 1 (F=0.460, P=0.804).

Conclusions

Regional mechanical power can be monitored by EIT. Global mechanical power decreases during the descending PEEP trial, while regional mechanical power may increase in some cases, which may help in the selection of PEEP.

表1 不同PEEP水平下ROI 1~4区潮气比例比较(%,±s
图1 感兴趣区 1~4区机械能在每个病例中的分布变化。图a、b、c、d分别为感兴趣区1~4区;每条线代表1例患者,相同颜色的线条代表同一患者
表2 不同PEEP水平下ROI 1~4区机械能比较(mJ/kg,±s
1
Gattinoni L, Tonetti T, Quintel M. Intensive care medicine in 2050: ventilator-induced lung injury [J]. Intensive Care Med, 2018, 44(1):76-78.
2
Vasques F, Duscio E, Cipulli F, et al. Determinants and Prevention of Ventilator-Induced Lung Injury [J]. Crit Care Clin, 2018, 34(3):343-356.
3
Zhao Z, Frerichs I, He H, et al. The calculation of mechanical power is not suitable for intra-patient monitoring under pressure-controlled ventilation [J]. Intensive Care Med, 2019, 45(5):749-750.
4
Brochard L, Bersten A. Mechanical Power: A Biomarker for the Lung? [J]. Anesthesiology, 2019, 130(1):9-11.
5
Gattinoni L, Tonetti T, Cressoni M, et al. Ventilator-related causes of lung injury: the mechanical power [J]. Intensive Care Med, 2016, 42(10):1567-1575.
6
Bachmann MC, Morais C, Bugedo G, et al. Electrical impedance tomography in acute respiratory distress syndrome [J]. Crit Care, 2018, 22(1):263.
7
Karsten J, Grusnick C, Paarmann H, et al. Positive end-expiratory pressure titration at bedside using electrical impedance tomography in post-operative cardiac surgery patients [J]. Acta Anaesthesiol Scand, 2015, 59(6):723-732.
8
Ferguson ND, Fan E, Camporota L, et al. The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material [J]. Intensive Care Med, 2012, 38(10):1573-1582.
9
Karsten J, Stueber T, Voigt N, et al. Influence of different electrode belt positions on electrical impedance tomography imaging of regional ventilation: a prospective observational study [J]. Crit Care, 2016, 20:3.
10
Costa EL, Borges JB, Melo A, et al. Bedside estimation of recruitable alveolar collapse and hyperdistension by electrical impedance tomography [J]. Intensive Care Med, 2009, 35(6):1132-1137.
11
Cressoni M, Gotti M, Chiurazzi C, et al. Mechanical Power and Development of Ventilator-induced Lung Injury [J]. Anesthesiology, 2016, 124(5):1100-1108.
12
Maia LA, Samary CS, Oliveira MV, et al. Impact of Different Ventilation Strategies on Driving Pressure, Mechanical Power, and Biological Markers During Open Abdominal Surgery in Rats [J]. Anesth Analg, 2017, 125(4):1364-1374.
13
Protti A, Cressoni M, Santini A, et al. Lung stress and strain during mechanical ventilation: any safe threshold? [J]. Am J Respir Crit Care Med, 2011, 183(10):1354-1362.
14
Serpa Neto A, Deliberato RO, Johnson AEW, et al. Mechanical power of ventilation is associated with mortality in critically ill patients: an analysis of patients in two observational cohorts [J]. Intensive Care Med, 2018, 44(11):1914-1922.
15
Victorino JA, Borges JB, Okamoto VN, et al. Imbalances in regional lung ventilation: a validation study on electrical impedance tomography [J]. Am J Respir Crit Care Med, 2004, 169(7):791-800.
[1] 杨茂宪, 姚明, 徐龙生, 沈鹏, 陈文宇, 王倩倩, 施云超. 姜黄素对急性呼吸窘迫综合征大鼠肺组织及气道重塑的影响[J]. 中华危重症医学杂志(电子版), 2021, 14(05): 368-373.
[2] 林晶, 陈佳龙, 吴淡森, 李秀华, 郭潇岚, 石松菁. 电阻抗断层显像导向呼气末正压滴定对急性呼吸窘迫综合征/急性呼吸衰竭患者影响的Meta分析[J]. 中华危重症医学杂志(电子版), 2021, 14(03): 226-231.
[3] 王杰赞, 孟琳琳, 颜帅帅. 重症急性胰腺炎合并急性呼吸窘迫综合征患者拔管后序贯经鼻高流量氧疗30例分析[J]. 中华危重症医学杂志(电子版), 2021, 14(02): 142-145.
[4] 邹以席, 刘金松, 陈密, 黄方炯. 呼气末正压容量试验评估不停跳冠状动脉旁路移植术患者容量反应性的临床价值[J]. 中华危重症医学杂志(电子版), 2019, 12(02): 85-90.
[5] 张佳妮, 牟祎, 刘娜, 梁娟, 王晓东. 《孕期和产褥期孕产妇衰竭指南(2019)》要点解读[J]. 中华妇幼临床医学杂志(电子版), 2020, 16(01): 23-31.
[6] 王德运, 褚志刚, 栾夏刚. 重症烧伤的早期救治[J]. 中华损伤与修复杂志(电子版), 2021, 16(05): 383-388.
[7] 郭俊, 易小猛, 安玉玲, 魏绪霞, 范明明, 黎利娟, 陆平兰, 易慧敏, 吕海金. 间充质干细胞治疗肝移植术后难治性急性呼吸窘迫综合征[J]. 中华肝脏外科手术学电子杂志, 2020, 09(03): 232-238.
[8] 朱秀芬, 韦碧琳, 郑慧芳, 丁林芳, 徐子萌, 余文轩, 原皓, 常泽楠, 黄志坤, 刘紫锰. T管与PSV自主呼吸试验对重症患者成功撤机后临床转归的影响——一项回顾性队列研究[J]. 中华重症医学电子杂志, 2023, 09(01): 54-61.
[9] 王玉妹, 王岩, 周益民, 苗明月, 杨燕琳, 张琳琳, 徐明, 周建新. EIT在ARDS模型局部复张/过度膨胀比值监测中的应用[J]. 中华重症医学电子杂志, 2022, 08(04): 360-366.
[10] 张瑞, 隆云. 跨肺血管机械能的提出与内涵[J]. 中华重症医学电子杂志, 2020, 06(04): 361-364.
[11] 石颖, 左祥荣, 曹权. 急性呼吸窘迫综合征的表型及内型研究进展[J]. 中华重症医学电子杂志, 2020, 06(02): 215-222.
[12] 池熠, 隆云, 何怀武. 机械能:评估呼吸机相关肺损伤的新思路[J]. 中华重症医学电子杂志, 2019, 05(04): 307-310.
[13] 潘纯, 许媛, 杨毅. 高流量鼻导管氧疗治疗食道癌术后呼吸衰竭一例[J]. 中华重症医学电子杂志, 2019, 05(02): 203-206.
[14] 李文哲, 李建, 于湘友. 急性呼吸窘迫综合征机械通气中的自主呼吸:兴利除弊[J]. 中华重症医学电子杂志, 2019, 05(02): 99-103.
[15] 尹晓旭, 李静. 呼气末正压通气水平对肥胖腹腔镜结肠癌根治术患者术中呼吸功能的影响[J]. 中华肥胖与代谢病电子杂志, 2021, 07(04): 250-254.
阅读次数
全文


摘要