切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2020, Vol. 06 ›› Issue (03) : 267 -271. doi: 10.3877/cma.j.issn.2096-1537.2020.03.006

所属专题: 重症营养 重症医学 文献

专家论坛

肠道功能损害还是脓毒症的"发动机"吗?
吉晶晶1, 刘喆滢1, 苏磊2, 刘志锋2,()   
  1. 1. 510515 广州,南方医科大学研究生院;510010 广州,南部战区总医院重症医学科
    2. 510010 广州,南部战区总医院重症医学科
  • 收稿日期:2019-09-13 出版日期:2020-08-28
  • 通信作者: 刘志锋
  • 基金资助:
    国家自然科学基金(81571940,81741125); 军队后勤医学科研项目(CWH17L020,17CXZ008,18CXZ030)

Is gut dysfunction still the 'motor' of sepsis?

Jingjing Ji1, Zheying Liu1, Lei Su2, Zhifeng Liu2,()   

  1. 1. Graduate School, Southern Medical University, Guangzhou 510515, China; Department of Critical Care Medicine, General Hospital of Southern Theatre Command of Chinese PLA, Guangzhou 510010, China
    2. Department of Critical Care Medicine, General Hospital of Southern Theatre Command of Chinese PLA, Guangzhou 510010, China
  • Received:2019-09-13 Published:2020-08-28
  • Corresponding author: Zhifeng Liu
  • About author:
    Corresponding author: Liu Zhifeng, Email:
引用本文:

吉晶晶, 刘喆滢, 苏磊, 刘志锋. 肠道功能损害还是脓毒症的"发动机"吗?[J]. 中华重症医学电子杂志, 2020, 06(03): 267-271.

Jingjing Ji, Zheying Liu, Lei Su, Zhifeng Liu. Is gut dysfunction still the 'motor' of sepsis?[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2020, 06(03): 267-271.

脓毒症是由于感染导致宿主免疫失调反应而导致脏器功能衰竭的一组临床综合征,具有高发病率、高病死率、高治疗费用的特点。脓毒症状态下,肠道上皮细胞凋亡增加、通透性增加、黏膜完整性破坏以及肠道内菌群失衡,促进了脓毒症的进展,因而被称为脓毒症的"发动机"。近年来,随着研究的不断深入,肠道损害在脓毒症和多脏器功能障碍中的关键作用一直受到争议。笔者结合最新研究,对该理论体系进行分析总结,以期用新的依据回答该问题,即肠道损害还是脓毒症的"发动机"吗?分析发现,尽管细菌移位理论假说已不被试验结果支持,但肠道损害仍是脓毒症进展的重要驱动力,其因素包括:肠源性毒性淋巴液、上皮细胞凋亡和通透性增加、肠道内微生物菌群等。

Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection, with high morbidity, mortality, and cost. Under the sepsis state, many gut factors, including increased cell apoptosis and permeability, mucosal damage, and flora imbalance, could promote the process of sepsis. Therefore, gut dysfunction was previously regarded as the 'motor' of sepsis. However, some new studies posed a challenge on the key role of gut dysfunction in sepsis. In this paper, we summarize new studies to answer the question whether gut dysfunction is still the 'motor' of sepsis. The results obtained from these studies show that even the bacterial translocation theory is unsupported by the new studies, gut dysfunction is still the important driver of the process of sepsis. Severe diseases could induce gut dysfunction by increasing epithelial apoptosis, gut permeability, and chemical and immune barrier damage. Meanwhile, flora imbalance is also one of the factors that promote multi-organ dysfunction. In conclusion, gut dysfunction is still the 'motor' of sepsis and can promote the process of sepsis.

1
Rhodes A, Phillips G, Beale R, et al. The Surviving Sepsis Campaign bundles and outcome: results from the International Multicentre Prevalence Study on Sepsis (the IMPreSS study) [J]. Intens Care Med, 2015, 41(9): 1620-1628.
2
Mittal R, Coopersmith CM. Coopersmith. Redefining the gut as the motor of critical illness [J]. Trends Mol Med, 2014, 20(4): 214-223.
3
Carrico CJ, Meakins JL, Marshall JC, et al. Multiple-organ-failure syndrome [J]. Arch Surg, 1986, 121(2): 196-208.
4
Swank GM, Deitch EA. Role of the gut in multiple organ failure: bacterial translocation and permeability changes [J]. World J Surg, 1996, 20(4): 411-417.
5
Deitch EA. Bacterial translocation of the gut flora [J]. J Trauma, 1990, 30(12 Suppl): S184-S189.
6
Yoseph BP, Breed E, Overgaard CE, et al. Chronic alcohol ingestion increases mortality and organ injury in a murine model of septic peritonitis [J]. PLoS One, 2013, 8(5): e62792.
7
Crapser J, Ritzel R, Verma R, et al. Ischemic stroke induces gut permeability and enhances bacterial translocation leading to sepsis in aged mice [J]. Aging (Albany NY), 2016, 8(5): 1049-1060.
8
Moore FA, Moore EE, Poggetti R, et al. Gut bacterial translocation via the portal vein: a clinical perspective with major torso trauma [J]. J Trauma, 1991, 31(5): 629-636; discussion 636-638.
9
Badami CD, Senthil M, Caputo FJ, et al. Mesenteric lymph duct ligation improves survival in a lethal shock model [J]. Shock, 2008, 30(6): 680-685.
10
Deitch EA. Gut lymph and lymphatics: a source of factors leading to organ injury and dysfunction [J]. Ann N Y Acad Sci, 2010, 1207 (Suppl 1): E103-111.
11
Watkins AC, Caputo FJ, Badami C, et al. Mesenteric lymph duct ligation attenuates lung injury and neutrophil activation after intraperitoneal injection of endotoxin in rats [J]. J Trauma, 2008, 64(1): 126-130.
12
Senthil M, Watkins A, Barlos D, et al. Intravenous injection of trauma-hemorrhagic shock mesenteric lymph causes lung injury that is dependent upon activation of the inducible nitric oxide synthase pathway [J]. Ann Surg, 2007, 246(5): 822-830.
13
Lee MA, Yatani A, Sambol JT, et al. Role of gut-lymph factors in the induction of burn-induced and trauma-shock-induced acute heart failure [J]. Int J Clin Exp Med, 2008, 1(2): 171-180.
14
Zahs A, Bird MD, Ramirez L, et al. Inhibition of long myosin light-chain kinase activation alleviates intestinal damage after binge ethanol exposure and burn injury [J]. Am J Physiol Gastrointest Liver Physiol, 2012, 303(6): G705-712.
15
Mizuno T, Yokoyama Y, Nishio H, et al. Intraoperative bacterial translocation detected by bacterium-specific ribosomal rna-targeted reverse-transcriptase polymerase chain reaction for the mesenteric lymph node strongly predicts postoperative infectious complications after major hepatectomy for biliary malignancies [J]. Ann Surg, 2010, 252(6): 1013-1019.
16
Mittal A, Middleditch M, Ruggiero K, et al. Changes in the mesenteric lymph proteome induced by hemorrhagic shock [J]. Shock, 2010, 34(2): 140-149.
17
Caputo FJ, Rupani B, Watkins AC, et al. Pancreatic duct ligation abrogates the trauma hemorrhage-induced gut barrier failure and the subsequent production of biologically active intestinal lymph [J]. Shock, 2007, 28(4): 441-446.
18
Qin X, Dong W, Sharpe SM, et al. Role of lipase-generated free fatty acids in converting mesenteric lymph from a noncytotoxic to a cytotoxic fluid [J]. Am J Physiol Gastrointest Liver Physiol, 2012, 303(8): G969-978.
19
Dominguez JA, Xie Y, Dunne WM, et al. Intestine-specific Mttp deletion decreases mortality and prevents sepsis-induced intestinal injury in a murine model of Pseudomonas aeruginosa pneumonia [J]. PLoS One, 2012, 7(11): e49159.
20
Jørgensen VL, Nielsen SL, Espersen K, et al. Increased colorectal permeability in patients with severe sepsis and septic shock [J]. Intens Care Med, 2006, 32(11): 1790-1796.
21
Turner JR. Intestinal mucosal barrier function in health and disease [J]. Nat Rev Immunol, 2009, 9(11): 799-809.
22
Perrone EE, Jung E, Breed E, et al. Mechanisms of methicillin-resistant Staphylococcus aureus pneumonia-induced intestinal epithelial apoptosis [J]. Shock, 2012, 38(1): 68-75.
23
Stromberg PE, Woolsey CA, Clark AT, et al. CD4+ lymphocytes control gut epithelial apoptosis and mediate survival in sepsis [J]. FASEB J, 2009, 23(6): 1817-1825.
24
Qin X, Caputo FJ, Xu DZ, et al. Hydrophobicity of mucosal surface and its relationship to gut barrier function [J]. Shock, 2008, 29(3): 372-376.
25
Lu Q, Xu DZ, Sharpe S, et al. The anatomic sites of disruption of the mucus layer directly correlate with areas of trauma/hemorrhagic shock-induced gut injury [J]. J Trauma, 2011, 70(3): 630-635.
26
Sharpe SM, Qin X, Lu Q, et al. Loss of the intestinal mucus layer in the normal rat causes gut injury but not toxic mesenteric lymph nor lung injury [J]. Shock, 2010, 34(5): 475-481.
27
Amin PB, Diebel LN, Liberati DM. Secretory immunoglobulin a blunts gut-mediated priming of neutrophils in vitro [J]. J Trauma, 2008, 64(6): 1437-1442.
28
Pamer EG. Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens [J]. Science, 2016, 352(6285): 535-538.
29
Kamada N, Seo SU, Chen GY, et al. Role of the gut microbiota in immunity and inflammatory disease [J]. Nat Rev Immunol, 2013, 13(5): 321-335.
30
Vincent JL, Rello J, Marshall J, et al. International study of the prevalence and outcomes of infection in intensive care units [J]. JAMA, 2009, 302(21): 2323-2329.
31
Lankelma JM, Cranendonk DR, Belzer C, et al. Antibiotic-induced gut microbiota disruption during human endotoxemia: a randomised controlled study [J]. Gut, 2017, 66(9): 1623-1630.
32
Haak BW, Wiersinga WJ. The role of the gut microbiota in sepsis [J]. Lancet Gastroenterol Hepatol, 2017, 2(2): 135-143.
33
Lankelma JM, van Vught LA, Belzer C, et al. Critically ill patients demonstrate large interpersonal variation in intestinal microbiota dysregulation: a pilot study [J]. Intensive Care Med, 2017, 43(1): 59-68.
34
Ojima M, Motooka D, Shimizu K, et al. Metagenomic analysis reveals dynamic changes of whole gut microbiota in the acute phase of intensive care unit patients [J]. Dig Dis Sci, 2016, 61(6): 1628-1634.
35
Atarashi K, Tanoue T, Shima T, et al. Induction of colonic regulatory T cells by indigenous Clostridium species [J]. Science, 2011, 331(6015): 337-341.
36
Ivanov II, Atarashi K, Manel N, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria [J]. Cell, 2009, 139(3): 485-498.
37
Ochoa-Repáraz J, Mielcarz DW, Ditrio LE, et al. Central nervous system demyelinating disease protection by the human commensal Bacteroides fragilis depends on polysaccharide A expression [J]. J Immunol, 2010, 185(7): 4101-4108.
[1] 孟建标, 张庚, 焦燕娜. 脓毒症合并心功能障碍患者早期肠道微生态改变的探讨[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 279-285.
[2] 陈宇, 冯芳, 张露, 刘健. 基于生物信息学分析筛选脓毒症心肌病关键致病基因[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 286-291.
[3] 韩媛媛, 热孜亚·萨贝提, 冒智捷, 穆福娜依·艾尔肯, 陆晨, 桑晓红, 阿尔曼·木拉提, 张丽. 组合式血液净化治疗对脓毒症患者血清炎症因子水平和临床预后的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 272-278.
[4] 作者. 脓毒症与脓毒性休克[J]. 中华危重症医学杂志(电子版), 2023, 16(03): 0-.
[5] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[6] 魏徐, 张鸽, 伍金林. 新生儿脓毒症相关性凝血病的监测和治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 379-386.
[7] 姚咏明. 如何精准评估烧伤脓毒症患者免疫状态[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 552-552.
[8] 窦上文, 邓欢, 刘邦锋, 岳高远志, 朱华财, 刘永达. 术前复查尿培养在预测微通道经皮肾镜取石术相关感染并发症中的作用[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 361-366.
[9] 李伟, 卓剑, 黄川, 黄有攀. Lac、HO-1、sRAGE、CRP/ALB表达及脓毒症并发ARDS危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 514-516.
[10] 苗软昕, 乔晞. Toll样受体在脓毒症性急性肾损伤中的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 210-214.
[11] 李世明, 黄蔚, 刘玲. HMGB1介导脓毒症相关凝血功能障碍的作用机制及其治疗进展[J]. 中华重症医学电子杂志, 2023, 09(03): 269-273.
[12] 高超, 巢杰, 邱海波. T-bet:脓毒症免疫失衡中Th17细胞的新型调节分子[J]. 中华重症医学电子杂志, 2023, 09(03): 280-285.
[13] 陆猛桂, 黄斌, 李秋林, 何媛梅. 蜂蛰伤患者发生多器官功能障碍综合征的危险因素分析[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1010-1015.
[14] 谭睿, 王晶, 於江泉, 郑瑞强. 脓毒症中高密度脂蛋白、载脂蛋白A-I和血清淀粉样蛋白A的作用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(06): 749-753.
[15] 蔡荇, 郑瑞强. 肝素结合蛋白在脓毒症中的应用及研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(04): 487-490.
阅读次数
全文


摘要