切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2020, Vol. 06 ›› Issue (03) : 267 -271. doi: 10.3877/cma.j.issn.2096-1537.2020.03.006

所属专题: 重症营养 重症医学 文献

专家论坛

肠道功能损害还是脓毒症的"发动机"吗?
吉晶晶1, 刘喆滢1, 苏磊2, 刘志锋2,()   
  1. 1. 510515 广州,南方医科大学研究生院;510010 广州,南部战区总医院重症医学科
    2. 510010 广州,南部战区总医院重症医学科
  • 收稿日期:2019-09-13 出版日期:2020-08-28
  • 通信作者: 刘志锋
  • 基金资助:
    国家自然科学基金(81571940,81741125); 军队后勤医学科研项目(CWH17L020,17CXZ008,18CXZ030)

Is gut dysfunction still the 'motor' of sepsis?

Jingjing Ji1, Zheying Liu1, Lei Su2, Zhifeng Liu2,()   

  1. 1. Graduate School, Southern Medical University, Guangzhou 510515, China; Department of Critical Care Medicine, General Hospital of Southern Theatre Command of Chinese PLA, Guangzhou 510010, China
    2. Department of Critical Care Medicine, General Hospital of Southern Theatre Command of Chinese PLA, Guangzhou 510010, China
  • Received:2019-09-13 Published:2020-08-28
  • Corresponding author: Zhifeng Liu
  • About author:
    Corresponding author: Liu Zhifeng, Email:
引用本文:

吉晶晶, 刘喆滢, 苏磊, 刘志锋. 肠道功能损害还是脓毒症的"发动机"吗?[J/OL]. 中华重症医学电子杂志, 2020, 06(03): 267-271.

Jingjing Ji, Zheying Liu, Lei Su, Zhifeng Liu. Is gut dysfunction still the 'motor' of sepsis?[J/OL]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2020, 06(03): 267-271.

脓毒症是由于感染导致宿主免疫失调反应而导致脏器功能衰竭的一组临床综合征,具有高发病率、高病死率、高治疗费用的特点。脓毒症状态下,肠道上皮细胞凋亡增加、通透性增加、黏膜完整性破坏以及肠道内菌群失衡,促进了脓毒症的进展,因而被称为脓毒症的"发动机"。近年来,随着研究的不断深入,肠道损害在脓毒症和多脏器功能障碍中的关键作用一直受到争议。笔者结合最新研究,对该理论体系进行分析总结,以期用新的依据回答该问题,即肠道损害还是脓毒症的"发动机"吗?分析发现,尽管细菌移位理论假说已不被试验结果支持,但肠道损害仍是脓毒症进展的重要驱动力,其因素包括:肠源性毒性淋巴液、上皮细胞凋亡和通透性增加、肠道内微生物菌群等。

Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection, with high morbidity, mortality, and cost. Under the sepsis state, many gut factors, including increased cell apoptosis and permeability, mucosal damage, and flora imbalance, could promote the process of sepsis. Therefore, gut dysfunction was previously regarded as the 'motor' of sepsis. However, some new studies posed a challenge on the key role of gut dysfunction in sepsis. In this paper, we summarize new studies to answer the question whether gut dysfunction is still the 'motor' of sepsis. The results obtained from these studies show that even the bacterial translocation theory is unsupported by the new studies, gut dysfunction is still the important driver of the process of sepsis. Severe diseases could induce gut dysfunction by increasing epithelial apoptosis, gut permeability, and chemical and immune barrier damage. Meanwhile, flora imbalance is also one of the factors that promote multi-organ dysfunction. In conclusion, gut dysfunction is still the 'motor' of sepsis and can promote the process of sepsis.

1
Rhodes A, Phillips G, Beale R, et al. The Surviving Sepsis Campaign bundles and outcome: results from the International Multicentre Prevalence Study on Sepsis (the IMPreSS study) [J]. Intens Care Med, 2015, 41(9): 1620-1628.
2
Mittal R, Coopersmith CM. Coopersmith. Redefining the gut as the motor of critical illness [J]. Trends Mol Med, 2014, 20(4): 214-223.
3
Carrico CJ, Meakins JL, Marshall JC, et al. Multiple-organ-failure syndrome [J]. Arch Surg, 1986, 121(2): 196-208.
4
Swank GM, Deitch EA. Role of the gut in multiple organ failure: bacterial translocation and permeability changes [J]. World J Surg, 1996, 20(4): 411-417.
5
Deitch EA. Bacterial translocation of the gut flora [J]. J Trauma, 1990, 30(12 Suppl): S184-S189.
6
Yoseph BP, Breed E, Overgaard CE, et al. Chronic alcohol ingestion increases mortality and organ injury in a murine model of septic peritonitis [J]. PLoS One, 2013, 8(5): e62792.
7
Crapser J, Ritzel R, Verma R, et al. Ischemic stroke induces gut permeability and enhances bacterial translocation leading to sepsis in aged mice [J]. Aging (Albany NY), 2016, 8(5): 1049-1060.
8
Moore FA, Moore EE, Poggetti R, et al. Gut bacterial translocation via the portal vein: a clinical perspective with major torso trauma [J]. J Trauma, 1991, 31(5): 629-636; discussion 636-638.
9
Badami CD, Senthil M, Caputo FJ, et al. Mesenteric lymph duct ligation improves survival in a lethal shock model [J]. Shock, 2008, 30(6): 680-685.
10
Deitch EA. Gut lymph and lymphatics: a source of factors leading to organ injury and dysfunction [J]. Ann N Y Acad Sci, 2010, 1207 (Suppl 1): E103-111.
11
Watkins AC, Caputo FJ, Badami C, et al. Mesenteric lymph duct ligation attenuates lung injury and neutrophil activation after intraperitoneal injection of endotoxin in rats [J]. J Trauma, 2008, 64(1): 126-130.
12
Senthil M, Watkins A, Barlos D, et al. Intravenous injection of trauma-hemorrhagic shock mesenteric lymph causes lung injury that is dependent upon activation of the inducible nitric oxide synthase pathway [J]. Ann Surg, 2007, 246(5): 822-830.
13
Lee MA, Yatani A, Sambol JT, et al. Role of gut-lymph factors in the induction of burn-induced and trauma-shock-induced acute heart failure [J]. Int J Clin Exp Med, 2008, 1(2): 171-180.
14
Zahs A, Bird MD, Ramirez L, et al. Inhibition of long myosin light-chain kinase activation alleviates intestinal damage after binge ethanol exposure and burn injury [J]. Am J Physiol Gastrointest Liver Physiol, 2012, 303(6): G705-712.
15
Mizuno T, Yokoyama Y, Nishio H, et al. Intraoperative bacterial translocation detected by bacterium-specific ribosomal rna-targeted reverse-transcriptase polymerase chain reaction for the mesenteric lymph node strongly predicts postoperative infectious complications after major hepatectomy for biliary malignancies [J]. Ann Surg, 2010, 252(6): 1013-1019.
16
Mittal A, Middleditch M, Ruggiero K, et al. Changes in the mesenteric lymph proteome induced by hemorrhagic shock [J]. Shock, 2010, 34(2): 140-149.
17
Caputo FJ, Rupani B, Watkins AC, et al. Pancreatic duct ligation abrogates the trauma hemorrhage-induced gut barrier failure and the subsequent production of biologically active intestinal lymph [J]. Shock, 2007, 28(4): 441-446.
18
Qin X, Dong W, Sharpe SM, et al. Role of lipase-generated free fatty acids in converting mesenteric lymph from a noncytotoxic to a cytotoxic fluid [J]. Am J Physiol Gastrointest Liver Physiol, 2012, 303(8): G969-978.
19
Dominguez JA, Xie Y, Dunne WM, et al. Intestine-specific Mttp deletion decreases mortality and prevents sepsis-induced intestinal injury in a murine model of Pseudomonas aeruginosa pneumonia [J]. PLoS One, 2012, 7(11): e49159.
20
Jørgensen VL, Nielsen SL, Espersen K, et al. Increased colorectal permeability in patients with severe sepsis and septic shock [J]. Intens Care Med, 2006, 32(11): 1790-1796.
21
Turner JR. Intestinal mucosal barrier function in health and disease [J]. Nat Rev Immunol, 2009, 9(11): 799-809.
22
Perrone EE, Jung E, Breed E, et al. Mechanisms of methicillin-resistant Staphylococcus aureus pneumonia-induced intestinal epithelial apoptosis [J]. Shock, 2012, 38(1): 68-75.
23
Stromberg PE, Woolsey CA, Clark AT, et al. CD4+ lymphocytes control gut epithelial apoptosis and mediate survival in sepsis [J]. FASEB J, 2009, 23(6): 1817-1825.
24
Qin X, Caputo FJ, Xu DZ, et al. Hydrophobicity of mucosal surface and its relationship to gut barrier function [J]. Shock, 2008, 29(3): 372-376.
25
Lu Q, Xu DZ, Sharpe S, et al. The anatomic sites of disruption of the mucus layer directly correlate with areas of trauma/hemorrhagic shock-induced gut injury [J]. J Trauma, 2011, 70(3): 630-635.
26
Sharpe SM, Qin X, Lu Q, et al. Loss of the intestinal mucus layer in the normal rat causes gut injury but not toxic mesenteric lymph nor lung injury [J]. Shock, 2010, 34(5): 475-481.
27
Amin PB, Diebel LN, Liberati DM. Secretory immunoglobulin a blunts gut-mediated priming of neutrophils in vitro [J]. J Trauma, 2008, 64(6): 1437-1442.
28
Pamer EG. Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens [J]. Science, 2016, 352(6285): 535-538.
29
Kamada N, Seo SU, Chen GY, et al. Role of the gut microbiota in immunity and inflammatory disease [J]. Nat Rev Immunol, 2013, 13(5): 321-335.
30
Vincent JL, Rello J, Marshall J, et al. International study of the prevalence and outcomes of infection in intensive care units [J]. JAMA, 2009, 302(21): 2323-2329.
31
Lankelma JM, Cranendonk DR, Belzer C, et al. Antibiotic-induced gut microbiota disruption during human endotoxemia: a randomised controlled study [J]. Gut, 2017, 66(9): 1623-1630.
32
Haak BW, Wiersinga WJ. The role of the gut microbiota in sepsis [J]. Lancet Gastroenterol Hepatol, 2017, 2(2): 135-143.
33
Lankelma JM, van Vught LA, Belzer C, et al. Critically ill patients demonstrate large interpersonal variation in intestinal microbiota dysregulation: a pilot study [J]. Intensive Care Med, 2017, 43(1): 59-68.
34
Ojima M, Motooka D, Shimizu K, et al. Metagenomic analysis reveals dynamic changes of whole gut microbiota in the acute phase of intensive care unit patients [J]. Dig Dis Sci, 2016, 61(6): 1628-1634.
35
Atarashi K, Tanoue T, Shima T, et al. Induction of colonic regulatory T cells by indigenous Clostridium species [J]. Science, 2011, 331(6015): 337-341.
36
Ivanov II, Atarashi K, Manel N, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria [J]. Cell, 2009, 139(3): 485-498.
37
Ochoa-Repáraz J, Mielcarz DW, Ditrio LE, et al. Central nervous system demyelinating disease protection by the human commensal Bacteroides fragilis depends on polysaccharide A expression [J]. J Immunol, 2010, 185(7): 4101-4108.
[1] 庄燕, 戴林峰, 张海东, 陈秋华, 聂清芳. 脓毒症患者早期生存影响因素及Cox 风险预测模型构建[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 372-378.
[2] 杨瑾, 刘雪克, 张媛媛, 金钧, 韦瑶. 肠道微生物来源石胆酸对脓毒症相关肝损伤的保护作用[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 265-274.
[3] 张霞, 张瑞, 郑志波, 张勤. 紫草素调控乳酸化修饰和线粒体功能改善脓毒症心肌病小鼠的预后[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 275-284.
[4] 张婧琦, 江洋, 孙佳璐, 唐兴喆, 赵宇飞, 崔颖, 李信响, 戴景月, 傅琳, 彭新桂. 基于肾周CT特征结合血清肌酐水平探讨脓毒症伴急性肾损伤的早期识别[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 285-292.
[5] 李振翮, 魏长青, 甄国栋, 李振富. 脓毒症并发急性呼吸窘迫综合征患者血清S1P、Wnt5a变化及其临床意义[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 293-300.
[6] 樊恒, 孙敏, 朱建华. 红景天苷通过抑制PI3K/AKT/mTOR信号通路对大鼠脓毒症急性肾损伤的保护作用[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 188-195.
[7] 成人脓毒症患者β-内酰胺类抗生素延长输注专家共识编写组. 成人脓毒症患者β-内酰胺类抗生素延长输注专家共识[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 313-324.
[8] 陈曦, 吴宗盛, 郑明珠, 邱海波. 胸腺萎缩在脓毒症免疫紊乱中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 379-383.
[9] 杨翔, 郭兰骐, 谢剑锋, 邱海波. 转录组学在脓毒症诊疗中的临床研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 384-388.
[10] 胡梓菡, 彭菲, 孙骎, 杨毅. 细胞外囊泡在脓毒症血管内皮损伤作用中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 265-270.
[11] 刘娟丽, 马四清, 乌仁塔娜. 髓源性抑制细胞在脓毒症中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 271-278.
[12] 苏生林, 马金兰, 于弘明, 杨晓军. 单细胞测序技术在脓毒症免疫研究中的应用进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 279-286.
[13] 陈惠英, 邱敏珊, 邵汉权. 脓毒症诱发肠黏膜屏障功能损伤的风险因素模型构建与应用效果[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 448-452.
[14] 傅新露, 李之岳, 卢丹. 妊娠合并结肠癌穿孔致脓毒症休克一例并文献复习[J/OL]. 中华产科急救电子杂志, 2024, 13(04): 227-231.
[15] 席静妮, 李娜, 张琪. 中性粒细胞与淋巴细胞比值对老年重症社区获得性肺炎进展为脓毒症的预测价值[J/OL]. 中华老年病研究电子杂志, 2024, 11(03): 28-31.
阅读次数
全文


摘要