切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2024, Vol. 10 ›› Issue (03) : 258 -264. doi: 10.3877/cma.j.issn.2096-1537.2024.03.009

综述

急性呼吸窘迫综合征相关肺纤维化的研究进展
田学1, 谢晖1, 王瑞兰1,()   
  1. 1. 201620 上海,南京医科大学附属上海一院临床医学院 上海交通大学附属第一人民医院急诊危重病科
  • 收稿日期:2023-06-10 出版日期:2024-08-28
  • 通信作者: 王瑞兰
  • 基金资助:
    国家自然科学基金面上项目(82072210); 上海申康医院发展中心临床三年行动计划资助项目(SHDC2020CR2013A,SHDC2020CR5010-003)

Research progress in acute respiratory distress syndrome related pulmonary fibrosis

Xue Tian1, Hui Xie1, Ruilan Wang1,()   

  1. 1. Department of Critical Care Medicine, Shanghai General Hospital of Nanjing Medical University, Shanghai Jiaotong University, School of Medicine, Shanghai 201620, China
  • Received:2023-06-10 Published:2024-08-28
  • Corresponding author: Ruilan Wang
引用本文:

田学, 谢晖, 王瑞兰. 急性呼吸窘迫综合征相关肺纤维化的研究进展[J]. 中华重症医学电子杂志, 2024, 10(03): 258-264.

Xue Tian, Hui Xie, Ruilan Wang. Research progress in acute respiratory distress syndrome related pulmonary fibrosis[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2024, 10(03): 258-264.

急性呼吸窘迫综合征(ARDS)是以弥漫性肺泡损伤(DAD)为特征的难治性低氧血症,其并发的肺纤维化常常引起高病死率,在重症新型冠状病毒感染(COVID-19)患者中尤为突出。ARDS异质性高,现阶段研究热点聚焦于ARDS亚表型的精准治疗,而纤维增生性ARDS机制复杂,且缺乏应用于临床的诊断性标志物而增加治疗难度以及难以评估预后。本文就ARDS相关肺纤维化发病机制以及研究进展进行综述。

Acute respiratory distress syndrome (ARDS) is refractory hypoxemia characterized by diffuse alveolar injury. As a complication, pulmonary fibrosis often leads to high mortality, especially in severe COVID-19. The heterogeneity of ARDS is prominent. Current researches focus on precise treatment for subtypes of ARDS. However, mechanism of fibroproliferative ARDS is complex, lack of diagnostic biomarkers for clinical application, which increases the difficulty of treatment and predicting prognosis. This article reviews research progress of pulmonary fibrosis pathogenesis in ARDS.

1
George PM, Wells AU, Jenkins RG. Pulmonary fibrosis and COVID-19: the potential role for antifibrotic therapy [J]. Lancet Respir Med, 2020, 8(8): 807-815.
2
Jyothula SSK, Peters A, Liang Y, et al. Fulminant lung fibrosis in non-resolvable COVID-19 requiring transplantation [J]. EBioMedicine, 2022, 86: 104351.
3
Yao XH, Luo T, Shi Y, et al. A cohort autopsy study defines COVID-19 systemic pathogenesis [J]. Cell Res, 2021, 31(8): 836-846.
4
Thille AW, Esteban A, Fernández-Segoviano P, et al. Chronology of histological lesions in acute respiratory distress syndrome with diffuse alveolar damage: a prospective cohort study of clinical autopsies [J]. Lancet Respir Med, 2013, 1(5): 395-401.
5
Bos LDJ, Ware LB. Acute respiratory distress syndrome: causes, pathophysiology, and phenotypes [J]. Lancet, 2022, 400(10358): 1145-1156.
6
Marshall RP, Bellingan G, Webb S, et al. Fibroproliferation occurs early in the acute respiratory distress syndrome and impacts on outcome [J]. Am J Respir Crit Care Med, 2000, 162(5): 1783-1788.
7
Gu J, Korteweg C. Pathology and pathogenesis of severe acute respiratory syndrome [J]. Am J Pathol, 2007, 170(4): 1136-1147.
8
Wang Q, Pan S, Zhang S, et al. Lung transplantation in pulmonary fibrosis secondary to influenza A pneumonia [J]. Ann Thorac Surg, 2019, 108(4): E233-E235.
9
Wendisch D, Dietrich O, Mari T, et al. SARS-CoV-2 infection triggers profibrotic macrophage responses and lung fibrosis [J]. Cell, 2021, 184(26): 6243-6261.
10
Solomon JJ, Heyman B, Ko JP, et al. CT of post-acute lung complications of COVID-19 [J]. Radiology, 2021, 301(2): E383-E395.
11
Michalski JE, Kurche JS, Schwartz DA. From ARDS to pulmonary fibrosis: the next phase of the COVID-19 pandemic? [J]. Transl Res, 2022, 241: 13-24.
12
Tomashefski JF Jr. Pulmonary pathology of acute respiratory distress syndrome [J]. Clin Chest Med, 2000, 21(3): 435-466.
13
Moss BJ, Ryter SW, Rosas IO. Pathogenic mechanisms underlying idiopathic pulmonary fibrosis [J]. Annu Rev Pathol, 2022, 17: 515-546.
14
Yanagi S, Tsubouchi H, Miura A, et al. Breakdown of epithelial barrier integrity and overdrive activation of alveolar epithelial cells in the pathogenesis of acute respiratory distress syndrome and lung fibrosis [J]. Biomed Res Int, 2015, 2015: 573210.
15
Burnham EL, Janssen WJ, Riches DW, et al. The fibroproliferative response in acute respiratory distress syndrome: mechanisms and clinical significance [J]. Eur Respir J, 2014, 43(1): 276-285.
16
Sisson TH, Mendez M, Choi K, et al. Targeted injury of type Ⅱ alveolar epithelial cells induces pulmonary fibrosis [J]. Am J Respir Crit Care Med, 2010, 181(3): 254-263.
17
Yao L, Conforti F, Hill C, et al. Paracrine signalling during ZEB1-mediated epithelial-mesenchymal transition augments local myofibroblast differentiation in lung fibrosis [J]. Cell Death Differ, 2019, 26(5): 943-957.
18
Selman M, Pardo A. Alveolar epithelial cell disintegrity and subsequent activation: a key process in pulmonary fibrosis [J]. Am J Respir Crit Care Med, 2012, 186(2): 119-121.
19
Basil MC, Cardenas-Diaz FL, Kathiriya JJ, et al. Human distal airways contain a multipotent secretory cell that can regenerate alveoli [J]. Nature, 2022, 604(7904): 120-126.
20
Laddha AP, Kulkarni YA. VEGF and FGF-2: promising targets for the treatment of respiratory disorders [J]. Respir Med, 2019, 156: 33-46.
21
Ebina M, Shimizukawa M, Shibata N, et al. Heterogeneous increase in CD34-positive alveolar capillaries in idiopathic pulmonary fibrosis [J]. Am J Respir Crit Care Med, 2004, 169(11): 1203-1208.
22
Cao Z, Lis R, Ginsberg M, et al. Targeting of the pulmonary capillary vascular niche promotes lung alveolar repair and ameliorates fibrosis [J]. Nat Med, 2016, 22(2): 154-162.
23
Piera-Velazquez S, Mendoza FA, Jimenez SA. Endothelial to mesenchymal transition (EndoMT) in the pathogenesis of human fibrotic diseases [J]. J Clin Med, 2016, 5(4): 45.
24
Huang X, Xiu H, Zhang S, et al. The role of macrophages in the pathogenesis of ALI/ARDS [J]. Mediators Inflamm, 2018, 2018: 1264913.
25
Duru N, Wolfson B, Zhou Q. Mechanisms of the alternative activation of macrophages and non-coding RNAs in the development of radiation-induced lung fibrosis [J]. World J Biol Chem, 2016, 7(4): 231-239.
26
Misharin AV, Morales-Nebreda L, Reyfman PA, et al. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span [J]. J Exp Med, 2017, 214(8): 2387-2404.
27
Zhou X, Franklin RA, Adler M, et al. Circuit design features of a stable two-cell system [J]. Cell, 2018, 172(4): 744-757.
28
Marini JJ, Gattinoni L. Time course of evolving ventilator-induced lung injury: the "shrinking baby lung" [J]. Crit Care Med, 2020, 48(8): 1203-1209.
29
Cabrera-Benítez NE, Parotto M, Post M, et al. Mechanical stress induces lung fibrosis by epithelial-mesenchymal transition [J]. Crit Care Med, 2012, 40(2): 510-517.
30
Albert RK, Smith B, Perlman CE, et al. Is progression of pulmonary fibrosis due to ventilation-induced lung injury? [J]. Am J Respir Crit Care Med, 2019, 200(2): 140-151.
31
Tschumperlin DJ, Ligresti G, Hilscher MB, et al. Mechanosensing and fibrosis [J]. J Clin Invest, 2018, 128(1): 74-84.
32
Kobayashi Y, Tata A, Konkimalla A, et al. Persistence of a regeneration-associated, transitional alveolar epithelial cell state in pulmonary fibrosis [J]. Nat Cell Biol, 2020, 22(8): 934-946.
33
Ting C, Aspal M, Vaishampayan N, et al. Fatal COVID-19 and non-COVID-19 acute respiratory distress syndrome is associated with incomplete alveolar type 1 epithelial cell differentiation from the transitional state without fibrosis [J]. Am J Pathol, 2022, 192(3): 454-467.
34
Lederer DJ, Martinez FJ. Idiopathic pulmonary fibrosis [J]. N Engl J Med, 2018, 378(19): 1811-1823.
35
Rogers AJ, Solus JF, Hunninghake GM, et al. MUC5B promoter polymorphism and development of acute respiratory distress syndrome [J]. Am J Respir Crit Care Med, 2018, 198(10): 1342-1345.
36
Capelozzi VL, Allen TC, Beasley MB, et al. Molecular and immune biomarkers in acute respiratory distress syndrome: a perspective from members of the Pulmonary Pathology Society [J]. Arch Pathol Lab Med, 2017, 141(12): 1719-1727.
37
Dhainaut JF, Charpentier J, Chiche JD. Transforming growth factor-beta: a mediator of cell regulation in acute respiratory distress syndrome [J]. Crit Care Med, 2003, 31(4 Suppl): S258-S264.
38
Gao L, Li X, Wang H, et al. Autotaxin levels in serum and bronchoalveolar lavage fluid are associated with inflammatory and fibrotic biomarkers and the clinical outcome in patients with acute respiratory distress syndrome [J]. J Intensive Care, 2021, 9(1): 44.
39
Moeller A, Gilpin SE, Ask K, et al. Circulating fibrocytes are an indicator of poor prognosis in idiopathic pulmonary fibrosis [J]. Am J Respir Crit Care Med, 2009, 179(7): 588-594.
40
Hudson LD, Hough CL. Therapy for late-phase acute respiratory distress syndrome [J]. Clin Chest Med, 2006, 27(4): 671-677.
41
Gao J, Chu W, Duan J, et al. Six-month outcomes of post-ARDS pulmonary fibrosis in patients with H1N1 pneumonia [J]. Front Mol Biosci, 2021, 8: 640763.
42
Bharat A, Querrey M, Markov NS, et al. Lung transplantation for patients with severe COVID-19 [J]. Sci Transl Med, 2020, 12(574): eabe4282.
43
Martin C, Papazian L, Payan MJ, et al. Pulmonary fibrosis correlates with outcome in adult respiratory distress syndrome. A study in mechanically ventilated patients [J]. Chest, 1995, 107(1): 196-200.
44
Gorman EA, O'Kane CM, McAuley DF. Acute respiratory distress syndrome in adults: diagnosis, outcomes, long-term sequelae, and management [J]. Lancet, 2022, 400(10358): 1157-1170.
45
Bos LD, Schouten LR, van Vught LA, et al. Identification and validation of distinct biological phenotypes in patients with acute respiratory distress syndrome by cluster analysis [J]. Thorax, 2017, 72(10): 876-883.
46
Liu X, Jiang Y, Jia X, et al. Identification of distinct clinical phenotypes of acute respiratory distress syndrome with differential responses to treatment [J]. Crit Care, 2021, 25(1): 320.
[1] 杨茂宪, 沈鹏, 王倩倩, 吴旺, 沈永帅, 蒋禛, 徐龙生, 朱建刚, 刘倍倍. 吡啶甲酸镁联合地塞米松对急性呼吸窘迫综合征大鼠的治疗作用研究[J]. 中华危重症医学杂志(电子版), 2024, 17(03): 196-203.
[2] 魏丁, 乔艳艳, 顾兴, 张燕, 李艳燕, 钱卫生, 潘蕾, 高永恒, 金发光. 体外膜肺氧合救治急性呼吸窘迫综合征不良预后危险因素分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 363-367.
[3] 周璇, 谢莉, 邹娟. 尼达尼布对特发性肺纤维化肺功能、肺纤维化程度及PDGF、PGE2、TGF-β1的影响[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 368-372.
[4] 吴沛玲, 娄月妍, 张洪艳, 陈东方, 刘雪青, 赵丽芳, 薛姗, 蒋捍东. 线粒体相关基因在特发性肺纤维化中的分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 178-184.
[5] 邱凌霄, 王创业, 卿斌, 刘锦程, 张鑫烨, 武文娟, 邢德冰, 郭亮, 徐智, 王斌. 基于转录组学筛选特发性肺纤维化的枢纽基因和信号通路[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 212-217.
[6] 庞丹, 孙刚, 伊乐, 丁立云, 钟美艳, 张杰, 于婷婷, 郭乐峰. 血清HIF-1α、VEGF、Flt-1的检测对ARDS的预后及临床意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 127-130.
[7] 倪韫晖, 杨毅, 袁雪燕, 邱海波. 胸壁加压在急性呼吸窘迫综合征中的应用和临床进展[J]. 中华重症医学电子杂志, 2024, 10(03): 243-247.
[8] 杨永红, 杨莹, 齐红蕾, 刘福瑞, 朱金源. 单细胞测序在急性呼吸窘迫综合征中的应用进展[J]. 中华重症医学电子杂志, 2024, 10(03): 248-252.
[9] 李松栗, 黄蔚, 巢杰, 杨毅, 邱海波. 单核/巨噬细胞来源的细胞外囊泡在急性呼吸窘迫综合征中的研究进展[J]. 中华重症医学电子杂志, 2024, 10(03): 253-257.
[10] 刘悦, 潘纯. 急性呼吸窘迫综合征患者肌松剂滴定的必要性与可行性[J]. 中华重症医学电子杂志, 2024, 10(02): 108-112.
[11] 王永广, 朱鹏, 许千金, 甘桂芬, 石钟山, 潘纯. 急性呼吸窘迫综合征诊断标准亟需更新[J]. 中华重症医学电子杂志, 2024, 10(02): 113-117.
[12] 史楠, 袁雪燕, 邱海波. 肺复张在急性呼吸窘迫综合征中的应用和临床进展[J]. 中华重症医学电子杂志, 2024, 10(02): 118-126.
[13] 孙藏岚, 黄丽丽, 李小雨, 邱海波. 脂质组学在急性呼吸窘迫综合征中的应用和临床进展[J]. 中华重症医学电子杂志, 2024, 10(02): 127-135.
[14] 王晶晶, 谢晖, 邓璞钰, 张晨晨, 田学, 谢云, 王瑞兰. 新型冠状病毒感染ARDS患者EIT监测下俯卧位通气成像的改变[J]. 中华重症医学电子杂志, 2024, 10(01): 31-37.
[15] 李浩南, 张煜彭, 付焱, 冯继伟, 刘凯, 张文凯. 缝隙连接蛋白43在肺部疾病中的研究进展[J]. 中华重症医学电子杂志, 2024, 10(01): 60-65.
阅读次数
全文


摘要