切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2024, Vol. 10 ›› Issue (03) : 253 -257. doi: 10.3877/cma.j.issn.2096-1537.2024.03.008

综述

单核/巨噬细胞来源的细胞外囊泡在急性呼吸窘迫综合征中的研究进展
李松栗1, 黄蔚1, 巢杰1, 杨毅1, 邱海波1,()   
  1. 1. 210009 南京,江苏省重症医学重点实验室 东南大学附属中大医院重症医学科
  • 收稿日期:2023-06-18 出版日期:2024-08-28
  • 通信作者: 邱海波
  • 基金资助:
    国家自然科学基金重点项目(81930058); 国家自然科学基金专项(82341032); 科技部国家重点研发计划项目(2022YFC2504400)

Research progress on extracellular vesicle derived from monocytes/macrophages in acute respiratory distress syndrome

Songli Li1, Wei Huang1, Jie Chao1, Yi Yang1, Haibo Qiu1,()   

  1. 1. Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda hospital, School of Medicine, Southeast University, Nanjing 210009, China
  • Received:2023-06-18 Published:2024-08-28
  • Corresponding author: Haibo Qiu
引用本文:

李松栗, 黄蔚, 巢杰, 杨毅, 邱海波. 单核/巨噬细胞来源的细胞外囊泡在急性呼吸窘迫综合征中的研究进展[J]. 中华重症医学电子杂志, 2024, 10(03): 253-257.

Songli Li, Wei Huang, Jie Chao, Yi Yang, Haibo Qiu. Research progress on extracellular vesicle derived from monocytes/macrophages in acute respiratory distress syndrome[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2024, 10(03): 253-257.

单核/巨噬细胞是肺部对抗病原微生物和外来刺激的第一道防线,可通过细胞外囊泡(EV)在急性呼吸窘迫综合征(ARDS)肺部免疫炎症反应的发生发展中扮演着重要角色。本文就单核/巨噬细胞来源的EV在ARDS中作用机制的相关研究进展以及其在ARDS诊治中潜在的临床意义进行综述。

Monocytes/macrophages, as the first line of defense against stimuli in the lungs, play an undeniable role in mediating the occurrence and development of immune inflammatory responses in the lungs of acute respiratory distress syndrome (ARDS) through extracellular vesicle (EV). This article reviews the research progress on the mechanism of EV derived from monocytes/macrophages in ARDS and their potential clinical significance in the diagnosis and treatment of ARDS.

1
Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries [J]. JAMA, 2016, 315(8): 788-800.
2
Meyer NJ, Gattinoni L, Calfee CS. Acute respiratory distress syndrome [J]. Lancet, 2021, 398(10300): 622-637.
3
Cocozza F, Grisard E, Martin-Jaular L, et al. SnapShot: extracellular vesicles [J]. Cell, 2020, 182(1): 262.
4
Lee H, Zhang D, Laskin DL, et al. Functional evidence of pulmonary extracellular vesicles in infectious and noninfectious lung inflammation [J]. J Immunol, 2018, 201(5): 1500-1509.
5
Abels ER, Breakefield XO. Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake [J]. Cell Mol Neurobiol, 2016, 36(3): 301-312.
6
Van der pol E, Böing AN, Harrison P, et al. Classification, functions, and clinical relevance of extracellular vesicles [J]. Pharmacol Rev, 2012, 64(3): 676-705.
7
Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends [J]. J Cell Biol, 2013, 200(4): 373-383.
8
Hallal S, Tűzesi á, Grau GE, et al. Understanding the extracellular vesicle surface for clinical molecular biology [J]. J Extracell Vesicles, 2022, 11(10): e12260.
9
Kalluri R, McAndrews KM. The role of extracellular vesicles in cancer [J]. Cell, 2023, 186(8): 1610-1626.
10
Buzás EI, Tóth , Sódar BW, et al. Molecular interactions at the surface of extracellular vesicles [J]. Semin Immunopathol, 2018, 40(5): 453-464.
11
Fitzgerald W, Freeman ML, Lederman MM, et al. A system of cytokines encapsulated in extracellular vesicles [J]. Sci Rep, 2018, 8(1): 8973.
12
Treps L, Perret R, Edmond S, et al. Glioblastoma stem-like cells secrete the pro-angiogenic VEGF-A factor in extracellular vesicles [J]. J Extracell Vesicles, 2017, 6(1): 1359479.
13
Quek C, Hill AF. The role of extracellular vesicles in neurodegenerative diseases [J]. Biochem Biophys Res Commun, 2017, 483(4): 1178-1186.
14
Smith ZJ, Lee C, Rojalin T, et al. Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content [J]. J Extracell Vesicles, 2015, 4: 28533.
15
Brzozowski JS, Jankowski H, Bond DR, et al. Lipidomic profiling of extracellular vesicles derived from prostate and prostate cancer cell lines [J]. Lipids Health Dis, 2018, 17(1): 211.
16
Cheng L, Hill AF. Therapeutically harnessing extracellular vesicles [J]. Nat Rev Drug Discov, 2022, 21(5): 379-399.
17
Fan EKY, Fan J. Regulation of alveolar macrophage death in acute lung inflammation [J]. Respir Res, 2018, 19(1): 50.
18
Kovach MA, Singer BH, Newstead MW, et al. IL-36γ is secreted in microparticles and exosomes by lung macrophages in response to bacteria and bacterial components [J]. J Leukoc Biol, 2016, 100(2): 413-421.
19
Kovach MA, Singer B, Martinez-Colon G, et al. IL-36γ is a crucial proximal component of protective type-1-mediated lung mucosal immunity in Gram-positive and -negative bacterial pneumonia [J]. Mucosal Immunol, 2017, 10(5): 1320-1334.
20
Soni S, Wilson MR, O'Dea KP, et al. Alveolar macrophage-derived microvesicles mediate acute lung injury [J]. Thorax, 2016, 71(11): 1020-1029.
21
Neri T, Armani C, Pegoli A, et al. Role of NF-kappaB and PPAR-gamma in lung inflammation induced by monocyte-derived microparticles [J]. Eur Respir J, 2011, 37(6): 1494-502.
22
Neri T, Scalise V, Passalacqua I, et al. CD18-mediated adhesion is required for the induction of a proinflammatory phenotype in lung epithelial cells by mononuclear cell-derived extracellular vesicles [J]. Exp Cell Res, 2018, 365(1): 78-84.
23
Mitra S, Wewers MD, Sarkar A. Mononuclear phagocyte-derived microparticulate caspase-1 induces pulmonary vascular endothelial cell injury [J]. PLoS One, 2015, 10(12): e0145607.
24
Mitra S, Exline M, Habyarimana F, et al. Microparticulate Caspase 1 regulates Gasdermin D and pulmonary vascular endothelial cell injury [J]. Am J Respir Cell Mol Biol, 2018, 59(1): 56-64.
25
Bhatnagar S, Shinagawa K, Castellino FJ, et al. Exosomes released from macrophages infected with intracellular pathogens stimulate a proinflammatory response in vitro and in vivo [J]. Blood, 2007, 110(9): 3234-3244.
26
Jung AL, Herkt CE, Schulz C, et al. Legionella pneumophila infection activates bystander cells differentially by bacterial and host cell vesicles [J]. Sci Rep, 2017, 7(1): 6301.
27
Van der Poll T. Tissue factor as an initiator of coagulation and inflammation in the lung [J]. Crit Care, 2008, 12 (Suppl 6): S3.
28
Agouni A, Mostefai HA, Porro C, et al. Sonic hedgehog carried by microparticles corrects endothelial injury through nitric oxide release [J]. FASEB J, 2007, 21(11): 2735-2741.
29
Falati S, Liu Q, Gross P, et al. Accumulation of tissue factor into developing thrombi in vivo is dependent upon microparticle P-selectin glycoprotein ligand 1 and platelet P-selectin [J]. J Exp Med, 2003, 197(11): 1585-1598.
30
Schneider DJ, Speth JM, Penke LR, et al. Mechanisms and modulation of microvesicle uptake in a model of alveolar cell communication [J]. J Biol Chem, 2017, 292(51): 20897-20910.
31
Bourdonnay E, Zasłona Z, Penke LR, et al. Transcellular delivery of vesicular SOCS proteins from macrophages to epithelial cells blunts inflammatory signaling [J]. J Exp Med, 2015, 212(5): 729-742.
32
Schneider DJ, Speth JM, Peters-Golden M. Signed, sealed, delivered: microenvironmental modulation of extracellular vesicle-dependent immunoregulation in the lung [J]. Front Cell Dev Biol, 2016, 4: 94.
33
Lee HD, Kim YH, Kim DS. Exosomes derived from human macrophages suppress endothelial cell migration by controlling integrin trafficking [J]. Eur J Immunol, 2014, 44(4): 1156-1169.
34
Zhang D, Lee H, Wang X, et al. A potential role of microvesicle-containing miR-223/142 in lung inflammation [J]. Thorax, 2019, 74(9): 865-874.
35
Tian H, Wu M, Zhou P, et al. The long non-coding RNA MALAT1 is increased in renal ischemia-reperfusion injury and inhibits hypoxia-induced inflammation [J]. Ren Fail, 2018, 40(1): 527-533.
36
Ye C, Li H, Bao M, et al. Alveolar macrophage - derived exosomes modulate severity and outcome of acute lung injury [J]. Aging (Albany NY), 2020, 12(7): 6120-6128.
37
Wang Y, Liu S, Li L, et al. Peritoneal M2 macrophage-derived extracellular vesicles as natural multitarget nanotherapeutics to attenuate cytokine storms after severe infections [J]. J Control Release, 2022, 349: 118-132.
[1] 杨茂宪, 沈鹏, 王倩倩, 吴旺, 沈永帅, 蒋禛, 徐龙生, 朱建刚, 刘倍倍. 吡啶甲酸镁联合地塞米松对急性呼吸窘迫综合征大鼠的治疗作用研究[J]. 中华危重症医学杂志(电子版), 2024, 17(03): 196-203.
[2] 吕军好, 林锦雯, 张心怡, 陈江华. 细胞外囊泡在肾移植诊断和治疗中的研究进展[J]. 中华移植杂志(电子版), 2024, 18(03): 186-192.
[3] 魏丁, 乔艳艳, 顾兴, 张燕, 李艳燕, 钱卫生, 潘蕾, 高永恒, 金发光. 体外膜肺氧合救治急性呼吸窘迫综合征不良预后危险因素分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 363-367.
[4] 庞丹, 孙刚, 伊乐, 丁立云, 钟美艳, 张杰, 于婷婷, 郭乐峰. 血清HIF-1α、VEGF、Flt-1的检测对ARDS的预后及临床意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 127-130.
[5] 杨永红, 杨莹, 齐红蕾, 刘福瑞, 朱金源. 单细胞测序在急性呼吸窘迫综合征中的应用进展[J]. 中华重症医学电子杂志, 2024, 10(03): 248-252.
[6] 倪韫晖, 杨毅, 袁雪燕, 邱海波. 胸壁加压在急性呼吸窘迫综合征中的应用和临床进展[J]. 中华重症医学电子杂志, 2024, 10(03): 243-247.
[7] 刘悦, 潘纯. 急性呼吸窘迫综合征患者肌松剂滴定的必要性与可行性[J]. 中华重症医学电子杂志, 2024, 10(02): 108-112.
[8] 王永广, 朱鹏, 许千金, 甘桂芬, 石钟山, 潘纯. 急性呼吸窘迫综合征诊断标准亟需更新[J]. 中华重症医学电子杂志, 2024, 10(02): 113-117.
[9] 史楠, 袁雪燕, 邱海波. 肺复张在急性呼吸窘迫综合征中的应用和临床进展[J]. 中华重症医学电子杂志, 2024, 10(02): 118-126.
[10] 孙藏岚, 黄丽丽, 李小雨, 邱海波. 脂质组学在急性呼吸窘迫综合征中的应用和临床进展[J]. 中华重症医学电子杂志, 2024, 10(02): 127-135.
[11] 陈含冰, 储翠林, 邱海波. 急性呼吸窘迫综合征中巨噬细胞死亡方式的研究进展[J]. 中华重症医学电子杂志, 2024, 10(01): 79-84.
[12] 卢梦诗, 刘威, 马加威, 嵇丹丹, 贾璇, 詹心萍, 罗亮. 人工智能在急性呼吸窘迫综合征领域的应用进展[J]. 中华重症医学电子杂志, 2024, 10(01): 66-71.
[13] 李浩南, 张煜彭, 付焱, 冯继伟, 刘凯, 张文凯. 缝隙连接蛋白43在肺部疾病中的研究进展[J]. 中华重症医学电子杂志, 2024, 10(01): 60-65.
[14] 王吉, 张颖, 顾雪, 杨朋磊, 陈齐红. 间充质干细胞微泡对ARDS肺纤维化影响的实验研究[J]. 中华临床医师杂志(电子版), 2024, 18(01): 72-78.
[15] 计超, 向群. 乙酰胆碱受体对急性呼吸窘迫综合征小鼠T细胞亚群和炎症因子的影响[J]. 中华诊断学电子杂志, 2024, 12(01): 50-56.
阅读次数
全文


摘要