1 |
Bos LD, van Walree IC, Kolk AH, et al. Alterations in exhaled breath metabolite-mixtures in two rat models of lipopolysaccharide-induced lung injury [J]. J Appl Physiol (1985), 2013, 115(10): 1487-1495.
|
2 |
Worrell JC, Macleod MKL. Stromal-immune cell crosstalk fundamentally alters the lung microenvironment following tissue insult [J]. Immunology, 2021, 163(3): 239-249.
|
3 |
Young MR. Endothelial cells in the eyes of an immunologist [J]. Cancer Immunol Immunoth, 2012, 61(10): 1609-1616.
|
4 |
杨毅, 邱海波. 急性呼吸窘迫综合征救治:需要遵循的十大原则 [J/OL]. 中华重症医学电子杂志, 2015, 1(1): 33-38.
|
5 |
Hautbergue T, Jamin EL, Debrauwer L, et al. From genomics to metabolomics, moving toward an integrated strategy for the discovery of fungal secondary metabolites [J]. Nat Prod Rep, 2018, 35(2): 147-173.
|
6 |
Cui L, Zheng D, Lee YH, et al. Metabolomics investigation reveals metabolite mediators associated with acute lung injury and repair in a murine model of influenza pneumonia [J]. Sci Rep, 2016, 6: 26076.
|
7 |
宋偲婷, 刘智玲, 张义雄, 等. 代谢组学测定对急性百草枯中毒大鼠的判定作用 [J]. 中华危重病急救医学, 2016, 28(4): 329-333.
|
8 |
宋嘉振, 李德馨. 肺的代谢功能 [J]. 国外医学·麻醉学与复苏分册, 1985, (6): 241-245.
|
9 |
Antonioli L, Blandizzi C, Pacher P, et al. Immunity, inflammation and cancer: a leading role for adenosine [J]. Nat Rev Cancer, 2013, 13(12): 842-857.
|
10 |
Eltzschig HK, Sitkovsky MV, Robson SC. Purinergic signaling during inflammation [J]. N Engl J Med, 2012, 367(24): 2322-2333.
|
11 |
Idzko M, Ferrari D, Eltzschig HK. Nucleotide signalling during inflammation [J]. Nature, 2014, 509(7500): 310-317.
|
12 |
Wu D, Birukov K. Endothelial cell mechano-metabolomic coupling to disease states in the lung microvasculature [J]. Front Bioeng Biotechnol, 2019, 7: 172.
|
13 |
Eckle T, Brodsky K, Bonney M, et al. HIF1A reduces acute lung injury by optimizing carbohydrate metabolism in the alveolar epithelium [J]. PLoS Biol, 2013, 11(9): e1001665.
|
14 |
Nadeem A, Al-Harbi NO, Ahmad SF, et al. Glucose-6-phosphate dehydrogenase inhibition attenuates acute lung injury through reduction in NADPH oxidase-derived reactive oxygen species [J]. Clin Exp Immunol, 2018, 191(3): 279-287.
|
15 |
Li X, Wu J, Sun X, et al. Autophagy reprograms alveolar progenitor cell metabolism in response to lung injury [J]. Stem Cell Reports, 2020, 14(3): 420-432.
|
16 |
Li K, Li M, Li W, et al. Airway epithelial regeneration requires autophagy and glucose metabolism [J]. Cell Death Dis, 2019, 10(12): 875.
|
17 |
Shi J, Yu T, Song K, et al. Dexmedetomidine ameliorates endotoxin-induced acute lung injury in vivo and in vitro by preserving mitochondrial dynamic equilibrium through the HIF-1a/HO-1 signaling pathway [J]. Redox Biol, 2021, 41: 101954.
|
18 |
Harris AJ, Mirchandani AS, Lynch RW, et al. IL4Rα signaling abrogates hypoxic neutrophil survival and limits acute lung injury responses in vivo [J]. Am J Respir Crit Care Med, 2019, 200(2): 235-246.
|
19 |
Zhong WJ, Yang HH, Guan XX, et al. Inhibition of glycolysis alleviates lipopolysaccharide-induced acute lung injury in a mouse model [J]. J Cell Physiol, 2019, 234(4): 4641-4654.
|
20 |
Gong Y, Lan H, Yu Z, et al. Blockage of glycolysis by targeting PFKFB3 alleviates sepsis-related acute lung injury via suppressing inflammation and apoptosis of alveolar epithelial cells [J]. Biochem Biophys Res Commun, 2017, 491(2): 522-529.
|
21 |
Chen J, Jin Y, Yang Y, et al. Epithelial dysfunction in lung diseases: effects of amino acids and potential mechanisms [J]. Adv Exp Med Biol, 2020, 1265: 57-70.
|
22 |
Sever N, Miličić G, Bodnar NO, et al. Mechanism of lamellar body formation by lung surfactant protein B [J]. Mol Cell, 2021, 81(1): 49-66.
|
23 |
汪衍敏, 王艳娟, 赵龙山, 等. 基于UPLC-MS/MS的热毒宁注射液治疗大鼠急性肺损伤的血浆代谢组学研究 [J]. 沈阳药科大学学报, 2018, 35(5): 374-380.
|
24 |
Bulau P, Zakrzewicz D, Kitowska K, et al. Analysis of methylarginine metabolism in the cardiovascular system identifies the lung as a major source of ADMA [J]. Am J Physiol Lung Cell Mol Physiol, 2007, 292(1): L18-24.
|
25 |
Naz S, Garcia A, Rusak M, et al. Method development and validation for rat serum fingerprinting with CE-MS: application to ventilator-induced-lung-injury study [J]. Anal Bioanal Chem, 2013, 405(14): 4849-4858.
|
26 |
Inoue S, Ikeda H. Differences in plasma amino acid levels in patients with and without bacterial infection during the early stage of acute exacerbation of COPD [J]. Int J Chron Obstruct Pulmon Dis, 2019, 14: 575-583.
|
27 |
杨文宏, 邱方. 谷氨酰胺对急性肺损伤的保护作用及机制 [J]. 中国医药指南, 2012, 10(18): 490-492.
|
28 |
Vigeland CL, Beggs HS, Collins SL, et al. Inhibition of glutamine metabolism accelerates resolution of acute lung injury [J]. Physiol Rep, 2019, 7(5): e14019.
|
29 |
Gordon EB, Hart GT, Tran TM, et al. Targeting glutamine metabolism rescues mice from late-stage cerebral malaria [J]. Proc Natl Acad Sci USA, 2015, 112(42): 13075-13080.
|
30 |
Lai CC, Liu WL, Chen CM. Glutamine attenuates acute lung injury caused by acid aspiration [J]. Nutrients, 2014, 6(8): 3101-3116.
|
31 |
Chuang YC, Shaw HM, Chen CC, et al. Short-term glutamine supplementation decreases lung inflammation and the receptor for advanced glycation end-products expression in direct acute lung injury in mice [J]. BMC Pulm Med, 2014, 14: 115.
|
32 |
Zhang Y, Ma X, Jiang D, et al. Glycine attenuates lipopolysaccharide-induced acute lung injury by regulating NLRP3 inflammasome and NRF2 signaling [J]. Nutrients, 2020, 12(3): 611.
|
33 |
Zhang Y, Yu W, Han D, et al. L-lysine ameliorates sepsis-induced acute lung injury in a lipopolysaccharide-induced mouse model [J]. Biomed Pharmacother, 2019, 118: 109307.
|
34 |
Zhang Sy, Shao D, Liu H, et al. Metabolomics Analysis Reveals That benzo[a]pyrene, a component of PM2.5, promotes pulmonary injury by modifying lipid metabolism in a phospholipase A2-dependent manner in vivo and in vitro [J]. Redox Biol, 2017, 13: 459-469.
|
35 |
Bottemanne P, Paquot A, Ameraoui H, et al. 25-Hydroxycholesterol metabolism is altered by lung inflammation, and its local administration modulates lung inflammation in mice [J]. FASEB J, 2021, 35(4): e21514.
|
36 |
Lopez-Rodriguez E, Gay-Jordi G, Mucci A, et al. Lung surfactant metabolism: early in life, early in disease and target in cell therapy [J]. Cell Tissue Res, 2017, 367(3): 721-735.
|
37 |
Yoder M, Zhuge Y, Yuan Y, et al. Bioactive lysophosphatidylcholine 16∶0 and 18∶0 are elevated in lungs of asthmatic subjects [J]. Allergy Asthma Immunol Res, 2014, 6(1): 61-65.
|
38 |
Izquierdo-García JL, Naz S, Nin N, et al. A metabolomic approach to the pathogenesis of ventilator-induced lung injury [J]. Anesthesiology, 2014, 120(3): 694-702.
|
39 |
Zambelli V, Di Grigoli G, Scanziani M, et al. Time course of metabolic activity and cellular infiltration in a murine model of acid-induced lung injury [J]. Intensive Care Med, 2012, 38(4): 694-701.
|
40 |
Mills EL, O'Neill LA. Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal [J]. Euro J Immunol, 2016, 46(1): 13-21.
|
41 |
Schoors S, Bruning U, Missiaen R, et al. Fatty acid carbon is essential for dNTP synthesis in endothelial cells [J]. Nature, 2015, 520(7546): 192-197.
|
42 |
Cui H, Xie N, Banerjee S, et al. Impairment of fatty acid oxidation in alveolar epithelial cells mediates acute lung injury [J]. American journal of respiratory cell and molecular biology, 2019, 60(2): 167-178.
|