切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2021, Vol. 07 ›› Issue (03) : 233 -240. doi: 10.3877/cma.j.issn.2096-1537.2021.03.007

基础研究

cGAS/STING通过NLRP3炎性小体调控人肺微血管内皮细胞炎症的作用机制
姜硕1, 王梦楠1, 赵慧颖1, 郭晓夏1, 王慧霞1, 安友仲1,()   
  1. 1. 100044,北京,北京大学人民医院重症医学科
  • 收稿日期:2021-05-27 出版日期:2021-08-28
  • 通信作者: 安友仲

cGAS/STING regulates inflammation of human pulmonary microvascular endothelial cells via NLRP3 inflammasome

Shuo Jiang1, Mengnan Wang1, Huiying Zhao1, Xiaoxia Guo1, Huixia Wang1, Youzhong An1,()   

  1. 1. Department of Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
  • Received:2021-05-27 Published:2021-08-28
  • Corresponding author: Youzhong An
引用本文:

姜硕, 王梦楠, 赵慧颖, 郭晓夏, 王慧霞, 安友仲. cGAS/STING通过NLRP3炎性小体调控人肺微血管内皮细胞炎症的作用机制[J]. 中华重症医学电子杂志, 2021, 07(03): 233-240.

Shuo Jiang, Mengnan Wang, Huiying Zhao, Xiaoxia Guo, Huixia Wang, Youzhong An. cGAS/STING regulates inflammation of human pulmonary microvascular endothelial cells via NLRP3 inflammasome[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2021, 07(03): 233-240.

目的

探讨鸟嘌呤核苷酸腺嘌呤核苷酸合成酶(cGAS)/干扰素激活蛋白(STING)通过NOD样受体蛋白3(NLRP3)炎性小体调控人肺微血管内皮细胞(HPMVECs)炎症的作用机制。

方法

原代培养HPMVECs,进行脂多糖(LPS)量效实验及cGAS、STING和NLRP3抑制干预实验。(1)量效实验:以50、100、1000 ng/ml的LPS作用24 h后(分别为50 ng/ml LPS组、100 ng/ml LPS组、1000 ng/ml LPS组),用实时荧光反转录-聚合酶链反应(qRT-PCR)和蛋白质免疫印迹试验(Western Blot)分别检测cGAS、STING和NLRP3表达。(2)cGAS抑制干预实验:使用cGAS(siRNA)转染,再加入100 ng/ml的LPS处理24 h;同时设立空白对照组、LPS刺激组、siRNA单独处理组,采用Western Blot检测STING、NLRP3,及NLRP3下游因子白介素(IL)-1β和IL-18的表达。(3)STING抑制干预实验:使用STING(siRNA)转染,再加入100 ng/ml的LPS处理24 h;同时设立空白对照组,采用Western Blot检测cGAS、NLRP3,及NLRP3下游因子IL-1β和IL-18的蛋白表达。(4)NLRP3抑制干预实验:使用NLRP3炎性小体抑制剂MCC950预处理30 min,再加入100 ng/ml的LPS处理24 h;同时设立空白对照组,采用Western Blot检测cGAS、STING,及NLRP3下游因子IL-1β和IL-18的蛋白表达。

结果

(1)量效实验:与空白对照组比较,HPMVECs中cGAS、STING、NLRP3的mRNA水平和蛋白表达均显著升高,差异有统计学意义(P<0.05)。(2)cGAS抑制干预实验:与空白对照组比较,LPS刺激HPMVECs,cGAS表达水平显著升高,差异有统计学意义(P<0.05);与LPS刺激组比较,抑制cGAS时,siRNA+LPS处理组STING、NLRP3及其下游因子IL-1β、IL-18的表达水平均显著降低,差异有统计学意义(P<0.05)。(3)STING抑制干预实验:与空白对照组比较,LPS刺激HPMVECs,STING表达水平显著升高,差异有统计学意义(P<0.05);与LPS刺激组比较,抑制STING时,NLRP3及其下游因子IL-1β、IL-18的表达水平均显著降低,差异有统计学意义(P<0.05),而cGAS的表达水平无显著降低(P>0.05)。(4)NLRP3抑制干预实验:与空白对照组比较,LPS刺激HPMVECs,siRNA+LPS处理组NLRP3表达水平显著升高,差异有统计学意义(P<0.05);与LPS刺激组比较,抑制NLRP3显著降低了NLRP3下游因子白细胞IL-1β和IL-18的表达,差异有统计学意义(P<0.05),而cGAS和STING的表达水平无显著降低;差异无统计学意义(P>0.05)。

结论

(1)LPS刺激下,在HPMVECs中cGAS、STING、NLRP3、IL-1β和IL-18的表达水平均显著升高,参与调控炎症反应;(2)cGAS/STING/NLRP3信号通路顺序参与调控PMVECs炎症作用。

Objective

To explore the role and mechanism of cyclic guanine adenine synthase (cGAS)/stimulator of interferon genes (STING) in regulating the inflammation of human pulmonary microvascular endothelial cells(HPMVECs) through NOD-like receptor protein 3(NLRP3) inflammasome.

Methods

Primary culture of HPMVECs, lipopolysaccharide (LPS) dose-effect experiment and cGAS, STING and NLRP3 inhibition intervention experiments. (1) Dose-effect experiment: After 24 hours of LPS exposure at 50, 100, 1000 ng/ml (50, 100, 1000 ng/ml group, respectively), real-time fluorescent reverse transcription-polymerase chain reaction (qRT-PCR) and western blotting (Western Blot) were used to detect cGAS, STING and NLRP3 expression. (2) cGAS inhibition intervention experiment: transfect with cGAS small interfering RNA (siRNA), and then add 100ng/ml LPS for 24 h; at the same time set up a blank control group, LPS stimulation group, and siRNA single treatment group, and Western Blot was used to detect STING, NLRP3, and The expression of NLRP3 downstream factors interleukin-1β (IL-1β) and interleukin-18 (IL-18). (3) STING inhibitory intervention experiment: Transfect with STING small interfering RNA (siRNA), and then add 100ng/ml LPS for 24 h; Set up multiple control groups at the same time to detect the protein expression of other factors. (4) NLRP3 inhibition intervention experiment: pretreated with NLRP3 inflammatory body inhibitor MCC950 for 30 minutes, and then added 100ng/ml LPS for 24 h; Set up multiple control groups at the same time to detect the protein expression of other factors.

Results

(1) Dose-effect experiment: the mRNA level and protein expression of cGAS, STING and NLRP3 in HPMVECs were significantly increased. (2) cGAS inhibition intervention experiment: LPS stimulated HPMVECs, and the expression level of cGAS increased significantly. Compared with the LPS group, when cGAS was inhibited, the expression levels of STING, NLRP3 and its downstream factors IL-1β and IL-18 were significantly reduced in siRNA+LPS stimulation group. (3) STING inhibition intervention experiment: LPS stimulated HPMVECs, and the expression level of STING increased significantly. Compared with the LPS group, when STING was inhibited, the expression levels of NLRP3 and its downstream factors IL-1β and IL-18 were significantly reduced, but the expression level of cGAS did not decrease significantly. (4) NLRP3 inhibition intervention experiment: LPS stimulated HPMVECs, and the expression level of NLRP3 increased significantly in siRNA+LPS stimulation group. Compared with the LPS group, inhibiting NLRP3 significantly reduced the expression of IL-1β and IL-18 in leukocytes, the downstream factors of NLRP3. The expression levels of cGAS and STING did not decrease significantly.

Conclusions

(1) Under the stimulation of LPS injury, the expression levels of cGAS, STING, NLRP3, IL-1β and IL-18 in human lung microvascular endothelial cells are significantly increased, and they participate in the regulation of inflammation. (2) The cGAS/STING/NLRP3 signaling pathway is involved in the regulation of ALI/ARDS in sequence.

图1 不同剂量LPS刺激下HPMVECs中cGAS mRNA和蛋白表达水平的变化
图2 不同剂量LPS刺激下HPMVECs中STING mRNA和蛋白表达水平的变化
图3 不同剂量LPS刺激下HPMVECs中NLRP3 mRNA和蛋白表达水平的变化
表1 不同剂量LPS刺激下HPMVECs中cGAS、STING、NLRP3 mRNA和蛋白表达水平的变化(
xˉ
±s)
图4 抑制cGAS对HPMVECs中STING、NLRP3、IL-1β与IL-18表达的影响
表2 LPS刺激下抑制cGAS、STING、NLRP3对HPMVECs中对应因子蛋白水平表达的影响(
xˉ
±s
图5 抑制STING对HPMVECs中cGAS、NLRP3、IL-1β与IL-18表达的影响
图6 抑制NLRP3对HPMVECs中cGAS、STING、IL-1β与IL-18表达的影响
1
Fan E, Brodie D, Slutsky AS. Acute respiratory distress syndrome: advances in diagnosis and treatment [J]. JAMA, 2018, 319(7): 698-710.
2
Kumar P, Shen Q, Pivetti CD, et al. Molecular mechanisms of endothelial hyperpermeability: implications in inflammation [J]. Expert Rev Mol Med, 2009, 11: e19.
3
Wang J, Dai M, Cui Y, et al. Association of Abnormal Elevations in IFIT3 with overactive cyclic GMP-AMP synthase/stimulator of interferon genes signaling in human systemic lupus erythematosus monocytes [J]. Arthritis Rheumatol, 2018, 70(12): 2036-2045.
4
Anghelina D, Lam E, Falck-Pedersen E. Diminished innate antiviral response to adenovirus vectors in cGAS/STING-deficient mice minimally impacts adaptive immunity [J]. J Virol, 2016, 90(13): 5915-5927.
5
An X, Zhu Y, Zheng T,et al. An analysis of the expression and association with immune cell infiltration of the cGAS/STING pathway in Pan-Cancer [J]. Mol Ther Nucleic Acids, 2019, 14: 80-89.
6
Ishikawa H, Barber GN. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling [J]. Nature, 2008, 455(7213): 674-678.
7
Ozaki E, Campbell M, Doyle SL. Targeting the NLRP3 inflammasome in chronic inflammatory diseases: current perspectives [J]. J Inflamm Res, 2015, 8: 15-27.
8
Bauernfeind FG, Horvath G, Stutz A, et al. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression [J]. J Immunol, 2009, 183(2): 787-791.
9
Tang T, Lang X, Xu C, et al. CLICs-dependent chloride efflux is an essential and proximal upstream event for NLRP3 inflammasome activation [J]. Nat Commun, 2017, 8(1): 202.
10
Grailer JJ, Canning BA, Kalbitz M, et al. Critical role for the NLRP3 inflammasome during acute lung injury [J]. J Immunol, 2014, 192(12): 5974-5983.
11
郭晓夏, 安友仲. A2b腺苷受体活化降低脂多糖诱导的肺微血管内皮通透性 [J]. 中华危重病急救医学, 2018, 30(6): 588-593.
12
王慧霞, 郭晓夏, 赵慧颖, 等. 腺苷A2B受体活化对TNF-α致人肺微血管内皮细胞炎性损伤的影响 [J]. 中国中西医结合急救杂志, 2018, 25(4): 337-341.
13
Sharma S, tenOever BR, Grandvaux N, et al. Triggering the interferon antiviral response through an IKK-related pathway [J]. Science, 2003, 300(5622): 1148-1151.
14
Tanaka Y, Chen ZJ. STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway [J]. Sci Signal, 2012, 5(214): ra20.
15
Fitzgerald KA, McWhirter SM, Faia KL, et al. IKK and TBK1 are essential components of the IRF3 signaling pathway [J]. Nat Immunol, 2003, 4(5): 491-496.
16
Yuan L, Mao Y, Luo W, et al. Palmitic acid dysregulates the Hippo-YAP pathway and inhibits angiogenesis by inducing mitochondrial damage and activating the cytosolic DNA sensor cGAS-STING-IRF3 signaling mechanism [J]. J Biol Chem, 2017, 292(36): 15002-15015.
17
Li W, Li W, Zang L, et al. Fraxin ameliorates lipopolysaccharide-induced acute lung injury in mice by inhibiting the NF-κB and NLRP3 signalling pathways [J]. Int Immunopharmacol, 2019, 67: 1-12.
18
Kolliputi N, Shaik RS, Waxman AB. The inflammasome mediates hyperoxia-induced alveolar cell permeability [J]. J Immunol, 2010, 184(10): 5819-5826.
19
Yan Y, Lu K, Ye T, et al. MicroRNA-223 attenuates LPS-induced inflammation in an acute lung injury model via the NLRP3 inflammasome and TLR4/NF-κB signaling pathway via RHOB [J]. Int J Mol Med, 2019, 43(3): 1467-1477.
20
Li D, Ren W, Jiang Z, Zhu L. Regulation of the NLRP3 inflammasome and macrophage pyroptosis by the p38 MAPK signaling pathway in a mouse model of acute lung injury [J]. Mol Med Rep, 2018, 18(5): 4399-4409.
21
Zhang H, Chen S, Zeng M, et al. Apelin-13 administration protects against LPS-induced acute lung injury by inhibiting NF-κB pathway and NLRP3 inflammasome activation [J]. Cell Physiol Biochem, 2018, 49(5): 1918-1932.
[1] 中华医学会器官移植学分会肺移植学组, 国家肺移植质控中心. 新型冠状病毒感染肺移植受者选择中国专家建议[J]. 中华移植杂志(电子版), 2023, 17(01): 13-16.
[2] 饶林静, 罗皓梨, 钟山. 不同时长PPV在体外循环心脏大血管术后并发ARDS中的临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 575-577.
[3] 罗婷, 张实. 5种生物标志物对ARDS预后的预测分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 471-475.
[4] 李伟, 卓剑, 黄川, 黄有攀. Lac、HO-1、sRAGE、CRP/ALB表达及脓毒症并发ARDS危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 514-516.
[5] 胡宗俊, 陈建国, 黄霞. ARDS机械通气继发肺栓塞危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 388-390.
[6] 张松涛, 李世金, 凌霄, 吴文辉. 胸部物理治疗联合布地奈德雾化对多发伤患者并发ARDS的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 373-375.
[7] 谭林, 蒲运刚, 朱顺, 杨希. 急性呼吸窘迫综合征患者血清FGF21、ANGPTL4、HO-1表达及其临床意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 227-229.
[8] 马娟娟, 陈雪玲, 王蕾. ARDS患者救治中有创呼吸机辅助呼吸的临床干预及疗效分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(06): 876-878.
[9] 胡宗俊, 岳希, 黄霞. 肺段肺复张对急性呼吸窘迫综合征患者预后的影响[J]. 中华肺部疾病杂志(电子版), 2022, 15(06): 796-800.
[10] 陈蕊, 杨洪娜, 方巍, 李鑫鑫, 李甜甜, 于孝义, 王艳雪, 李文玉. 血清与支气管肺泡灌洗液中细胞因子水平与肺内外ARDS的相关性研究[J]. 中华重症医学电子杂志, 2023, 09(03): 251-258.
[11] 吴梅清, 林瑾, 段美丽, 薛晓艳. 高密度脂蛋白水平对脓毒症相关的ARDS发生的影响[J]. 中华重症医学电子杂志, 2023, 09(02): 191-197.
[12] 王洁琼, 王慧霞, 赵慧颖, 安友仲. 血管紧张素转换酶2对人肺微血管内皮细胞炎性损伤的调控作用[J]. 中华重症医学电子杂志, 2023, 09(01): 78-83.
[13] 陈栋玉, 潘纯, 杨毅. ARDS患者自主呼吸努力评估方法的研究进展[J]. 中华重症医学电子杂志, 2023, 09(01): 84-88.
[14] 夏金根, 胡诗雨. 体外二氧化碳清除技术的重症应用场景[J]. 中华重症医学电子杂志, 2023, 09(01): 40-45.
[15] 尹承芬, 徐磊. 再议俯卧位通气的时机[J]. 中华重症医学电子杂志, 2023, 09(01): 9-13.
阅读次数
全文


摘要