切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2019, Vol. 05 ›› Issue (04) : 373 -378. doi: 10.3877/cma.j.issn.2096-1537.2019.04.015

所属专题: 文献

综述

电阻抗断层成像技术在呼吸系统肺功能成像中的应用
刘孟春1, 邢金燕1,()   
  1. 1. 266000 青岛大学附属医院重症医学科
  • 收稿日期:2018-07-07 出版日期:2019-11-28
  • 通信作者: 邢金燕

Electrical impedance tomography in lung imaging of the respiratory system

Mengchun Liu1, Jinyan Xing1,()   

  1. 1. Department of Intensive Care Unit, Affiliated Hospital of Qingdao University, Qingdao 266000, China
  • Received:2018-07-07 Published:2019-11-28
  • Corresponding author: Jinyan Xing
  • About author:
    Corresponding author: Xing Jinyan, Email:
引用本文:

刘孟春, 邢金燕. 电阻抗断层成像技术在呼吸系统肺功能成像中的应用[J]. 中华重症医学电子杂志, 2019, 05(04): 373-378.

Mengchun Liu, Jinyan Xing. Electrical impedance tomography in lung imaging of the respiratory system[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2019, 05(04): 373-378.

电阻抗断层成像技术(EIT)作为一项新兴的功能性成像技术,具有无损伤、便携、图像监护等突出特点。其中肺功能成像为目前EIT最主要的应用领域,可以实现肺通气及血流灌注的实时动态监测。本文介绍肺EIT在呼吸系统常见疾病如急性呼吸窘迫综合征、慢性阻塞性肺疾病、肺栓塞等疾病中的基础及临床研究进展,为未来EIT技术的进步及临床应用提供帮助。

Electrical impedance tomography (EIT) is a new functional imaging technology, with the outstanding advantages of noninvasiveness, portability, and medical image monitoring. The functional lung imaging is the main application field of EIT, which can achieve real-time dynamic data of pulmonary ventilation and perfusion. This paper reviews some progresses of its fundamental research and clinical application in the common diseases of respiratory system such as acute respiratory distress syndrome, chronic obstructive pulmonary disease, pulmonary embolism, to offer support for the technological progress and clinical application of EIT in the future.

图1 肺电阻抗断层成像技术的状态图像的定制兴趣区。图a为肺部感染患者仰卧位的肺电阻抗图像:各像素的相关阻抗变化显示为色度差异,白色——图像内的最大区域阻抗变化(如100%)部位,即换气良好的区域,蓝色——最大区域阻抗变化>10%则呈深蓝色显示,深蓝色随数值的增加而逐渐变为浅蓝色;黑色——最大区域阻抗变化<10%的区域,即换气不足或非换气区域;图b为同一患者的胸部CT:提示双肺炎症,双侧胸腔积液并双肺下叶膨胀不全
图2 EIT提供的吸气末趋势视图和EELI趋势视图。图a为肺部感染患者应用PEEP 6 cmH2O机械通气后吸气末趋势视图;图b为EELI变化的趋势视图;蓝色——EELI增加,即正向变化;黄色——EELI减少,即负向变化;黑色——EELI无变化
1
Bachmann MC, Morais C, Bugedo G, et al. Electrical impedance tomography in acute respiratory distress syndrome [J]. Crit Care, 2018, 22(1): 263.
2
Murphy EK, Mahara A, Halter RJ. Absolute reconstructions using rotational electrical impedance tomography for breast cancer imaging [J]. IEEE Trans Med Imaging, 2017, 36(4): 892-903.
3
Boverman G, Kao TJ, Wang X, et al. Detection of small bleeds in the brain with electrical impedance tomography [J]. Physiol Meas, 2016, 37(6): 727-750.
4
Podczeck F, Mitchell CL, Newton JM, et al. The gastric emptying of food as measured by gamma-scintigraphy and electrical impedance tomography (EIT) and its influence on the gastric emptying of tablets of different dimensions [J]. J Pharm Pharmacol, 2007, 59(11): 1527-1536.
5
Stankiewicz-Rudnicki M, Gaszynski T, Gaszynski W. Assessment of regional ventilation in acute respiratory distress syndrome by electrical impedance tomography [J]. Anaesthesiol Intensive Ther, 2015, 47(1): 77-81.
6
Barber DC. A review of image reconstruction techniques for electrical impedance tomography [J]. Med Phys, 1989, 16(2): 162-169.
7
Visser KR. Electric properties of flowing blood and impedance cardiography [J]. Ann Biomed Eng, 1989, 17(5): 463-473.
8
Karsten J, Stueber T, Voigt N, et al. Influence of different electrode belt positions on electrical impedance tomography imaging of regional ventilation: a prospective observational study [J]. Crit Care, 2016, 20(1): 3.
9
Krueger-Ziolek S, Schullcke B, Kretschmer J, et al. Positioning of electrode plane systematically influences EIT imaging [J]. Physiol Meas, 2015, 36(6): 1109-1118.
10
Derwall M, Martin L, Rossaint R. The acute respiratory distress syndrome: Pathophysiology, current clinical practice, and emerging therapies [J]. Expert Rev Respir Med, 2018, 12(12): 1021-1029.
11
Amato MB, Meade MO, Slutsky AS, et al. Driving pressure and survival in the acute respiratory distress syndrome [J]. N Engl J Med, 2015, 372(8): 747-755.
12
Hsu CF, Cheng JS, Lin WC, et al. Electrical impedance tomography monitoring in acute respiratory distress syndrome patients with mechanical ventilation during prolonged positive end-expiratory pressure adjustments [J]. J Formos Med Assoc, 2016, 115(3): 195-202.
13
Heines SJH, Strauch U, van de Poll MCG, et al. Clinical implementation of electric impedance tomography in the treatment of ARDS: a single centre experience [J]. J Clin Monit Comput, 2018, DOI: 10.1007/s10877-018-0164-x.
14
Mauri T, Bellani G, Confalonieri A, et al. Topographic distribution of tidal ventilation in acute respiratory distress syndrome: effects of positive end-expiratory pressure and pressure support [J]. Crit Care Med, 2013, 41(7): 1664-1673.
15
Blankman P, Hasan D, van Mourik MS, et al. Ventilation distribution measured with EIT at varying levels of pressure support and neurally adjusted ventilatory assist in patients with ALI [J]. Intensive Care Med, 2013, 39(6): 1057-1062.
16
Trepte CJ, Phillips CR, Sola J, et al. Electrical impedance tomography (EIT) for quantification of pulmonary edema in acute lung injury [J]. Crit Care, 2016, 20(1): 18.
17
Nguyen DT, Jin C, Thiagalingam A, et al. A review on electrical impedance tomography for pulmonary perfusion imaging [J]. Physiol Meas, 2012, 33(5): 695-706.
18
Grant CA, Pham T, Hough J, et al. Measurement of ventilation and cardiac related impedance changes with electrical impedance tomography [J]. Crit Care, 2011, 15(1): R37.
19
Deibele JM, Luepschen H, Leonhardt S. Dynamic separation of pulmonary and cardiac changes in electrical impedance tomography [J]. Physiol Meas, 2008, 29(6): S1-14.
20
Frerichs I, Hinz J, Herrmann P, et al. Regional lung perfusion as determined by electrical impedance tomography in comparison with electron beam CT imaging [J]. IEEE Trans Med Imaging, 2002, 21(6): 646-652.
21
Borges JB, Suarez-Sipmann F, Bohm SH, et al. Regional lung perfusion estimated by electrical impedance tomography in a piglet model of lung collapse [J]. J Appl Physiol (1985), 2012, 112(1): 225-236.
22
Nguyen DT, Bhaskaran A, Chik W, et al. Perfusion redistribution after a pulmonary-embolism-like event with contrast enhanced EIT [J]. Physiol Meas, 2015, 36(6): 1297-1309.
23
Mirza S, Clay RD, Koslow MA, et al. COPD Guidelines: A Review of the 2018 GOLD Report [J]. Mayo Clin Proc, 2018, 93(10): 1488-1502.
24
Vogt B, Zhao Z, Zabel P, et al. Regional lung response to bronchodilator reversibility testing determined by electrical impedance tomography in chronic obstructive pulmonary disease [J]. Am J Physiol Lung Cell Mol Physiol, 2016, 311(1): L8-L19.
25
Vogt B, Pulletz S, Elke G, et al. Spatial and temporal heterogeneity of regional lung ventilation determined by electrical impedance tomography during pulmonary function testing [J]. J Appl Physiol (1985), 2012, 113(7): 1154-1161.
26
Frerichs I, Achtzehn U, Pechmann A, et al. High-frequency oscillatory ventilation in patients with acute exacerbation of chronic obstructive pulmonary disease [J]. J Crit Care, 2012, 27(2): 172-181.
27
Smit HJ, Vonk-Noordegraaf A, Marcus JT, et al. Pulmonary vascular responses to hypoxia and hyperoxia in healthy volunteers and COPD patients measured by electrical impedance tomography [J]. Chest, 2003, 123(6): 1803-1809.
28
Karsten J, Krabbe K, Heinze H, et al. Bedside monitoring of ventilation distribution and alveolar inflammation in community-acquired pneumonia [J]. J Clin Monit Comput, 2014, 28(4): 403-408.
29
Becher T, Bussmeyer M, Lautenschlager I, et al. Characteristic pattern of pleural effusion in electrical impedance tomography images of critically ill patients [J]. Br J Anaesth, 2018, 120(6): 1219-1228.
30
Blaser D, Pulletz S, Becher T, et al. Unilateral empyema impacts the assessment of regional lung ventilation by electrical impedance tomography [J]. Physiol Meas, 2014, 35(6): 975-983.
31
Kjellstrom B, Hjalmarsson C, Kylhammar D, et al. Pulmonary arterial hypertension: assessing risk to improve prognosis [J]. Expert Rev Cardiovasc Ther, 2018, DOI: 10.1080/14779072.2019.1548278:1-2.
32
Smit HJ, Vonk-Noordegraaf A, Boonstra A, et al. Assessment of the pulmonary volume pulse in idiopathic pulmonary arterial hypertension by means of electrical impedance tomography [J]. Respiration, 2006, 73(5): 597-602.
33
Kerem E, Cohen-Cymberknoh M. Disparities in cystic fibrosis care and outcome: socioeconomic status and beyond [J]. Chest, 2016, 149(2): 298-300.
34
Muller PA, Mueller JL, Mellenthin M, et al. Evaluation of surrogate measures of pulmonary function derived from electrical impedance tomography data in children with cystic fibrosis [J]. Physiol Meas, 2018, 39(4): 045008.
35
Zhao Z, Fischer R, Frerichs I, et al. Regional ventilation in cystic fibrosis measured by electrical impedance tomography [J]. J Cyst Fibros, 2012, 11(5): 412-418.
36
Zhao Z, Muller-Lisse U, Frerichs I, et al. Regional airway obstruction in cystic fibrosis determined by electrical impedance tomography in comparison with high resolution CT [J]. Physiol Meas, 2013, 34(11): N107-114.
37
Javaherian A, Soleimani M, Moeller K. A fast time-difference inverse solver for 3D EIT with application to lung imaging [J]. Med Biol Eng Comput, 2016, 54(8): 1243-1255.
38
Schullcke B, Gong B, Krueger-Ziolek S, et al. Lobe based image reconstruction in Electrical Impedance Tomography [J]. Med Phys, 2017, 44(2): 426-436.
[1] 中华医学会器官移植学分会肺移植学组, 国家肺移植质控中心. 新型冠状病毒感染肺移植受者选择中国专家建议[J]. 中华移植杂志(电子版), 2023, 17(01): 13-16.
[2] 李伟, 卓剑, 黄川, 黄有攀. Lac、HO-1、sRAGE、CRP/ALB表达及脓毒症并发ARDS危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 514-516.
[3] 罗婷, 张实. 5种生物标志物对ARDS预后的预测分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 471-475.
[4] 饶林静, 罗皓梨, 钟山. 不同时长PPV在体外循环心脏大血管术后并发ARDS中的临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 575-577.
[5] 张松涛, 李世金, 凌霄, 吴文辉. 胸部物理治疗联合布地奈德雾化对多发伤患者并发ARDS的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 373-375.
[6] 胡宗俊, 陈建国, 黄霞. ARDS机械通气继发肺栓塞危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 388-390.
[7] 谭林, 蒲运刚, 朱顺, 杨希. 急性呼吸窘迫综合征患者血清FGF21、ANGPTL4、HO-1表达及其临床意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 227-229.
[8] 胡宗俊, 岳希, 黄霞. 肺段肺复张对急性呼吸窘迫综合征患者预后的影响[J]. 中华肺部疾病杂志(电子版), 2022, 15(06): 796-800.
[9] 陈蕊, 杨洪娜, 方巍, 李鑫鑫, 李甜甜, 于孝义, 王艳雪, 李文玉. 血清与支气管肺泡灌洗液中细胞因子水平与肺内外ARDS的相关性研究[J]. 中华重症医学电子杂志, 2023, 09(03): 251-258.
[10] 吴梅清, 林瑾, 段美丽, 薛晓艳. 高密度脂蛋白水平对脓毒症相关的ARDS发生的影响[J]. 中华重症医学电子杂志, 2023, 09(02): 191-197.
[11] 陈栋玉, 潘纯, 杨毅. ARDS患者自主呼吸努力评估方法的研究进展[J]. 中华重症医学电子杂志, 2023, 09(01): 84-88.
[12] 王洁琼, 王慧霞, 赵慧颖, 安友仲. 血管紧张素转换酶2对人肺微血管内皮细胞炎性损伤的调控作用[J]. 中华重症医学电子杂志, 2023, 09(01): 78-83.
[13] 夏金根, 胡诗雨. 体外二氧化碳清除技术的重症应用场景[J]. 中华重症医学电子杂志, 2023, 09(01): 40-45.
[14] 王晶晶, 谢晖, 王瑞兰. 电阻抗断层成像监测俯卧位通气的发展现状[J]. 中华重症医学电子杂志, 2023, 09(01): 35-39.
[15] 尹承芬, 徐磊. 再议俯卧位通气的时机[J]. 中华重症医学电子杂志, 2023, 09(01): 9-13.
阅读次数
全文


摘要