切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2023, Vol. 09 ›› Issue (04) : 391 -395. doi: 10.3877/cma.j.issn.2096-1537.2023.04.009

所属专题: 重症医学

综述

细菌外膜囊泡在ARDS中的功能及机制研究进展
陈菁, 黄蔚, 邱海波()   
  1. 210009 南京,江苏省重症医学重点实验室 东南大学附属中大医院重症医学科
  • 收稿日期:2022-12-15 出版日期:2023-11-28
  • 通信作者: 邱海波
  • 基金资助:
    国家自然科学基金重点项目(81930058); 江苏省重症医学重点实验室项目(BM2020004)

Advances on function and mechanism of bacterial outer membrane vesicles in acute respiratory distress syndrome

Jing Chen, Wei Huang, Haibo Qiu()   

  1. Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
  • Received:2022-12-15 Published:2023-11-28
  • Corresponding author: Haibo Qiu
引用本文:

陈菁, 黄蔚, 邱海波. 细菌外膜囊泡在ARDS中的功能及机制研究进展[J/OL]. 中华重症医学电子杂志, 2023, 09(04): 391-395.

Jing Chen, Wei Huang, Haibo Qiu. Advances on function and mechanism of bacterial outer membrane vesicles in acute respiratory distress syndrome[J/OL]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2023, 09(04): 391-395.

急性呼吸窘迫综合征(ARDS)是以失控炎症反应为发病机制及难治性低氧血症为主要临床特征的致命性疾病,感染是其最常见的诱因。外膜囊泡(OMVs)是革兰氏阴性菌分泌的纳米球形颗粒,载有大量细菌成分。近年来研究表明OMVs在细菌定植、毒力因子递送和调控宿主免疫反应中起着重要的作用。本文就OMVs在ARDS免疫反应中的功能及机制进行综述。

Acute respiratory distress syndrome (ARDS), a fatal disease characterized by uncontrolled immune response and refractory hypoxemia, is most commonly induced by infection. Outer membrane vesicles (OMVs) are nanoparticles produced by gram-negative bacteria via the extrusion of the outer membrane and can deliver a range of bacterial molecules to host cells. Recently it was found that OMVs play vital roles in bacterial colonization, delivery of virulence factors, and disease pathogenesis. This article reviews the formation and biological functions of OMVs, and the inflammatory and pathological mechanisms of OMVs in ARDS.

1
Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries [J]. JAMA, 2016, 315(8): 788-800.
2
Hendrix A, De Wever O. Systemically circulating bacterial extracellular vesicles: origin, fate, and function [J]. Trends Microbiol, 2022, 30(3): 213-216.
3
DeVoe IW, Gilchrist JE. Pili on meningococci from primary cultures of nasopharyngeal carriers and cerebrospinal fluid of patients with acute disease [J]. J Exp Med, 1975, 141(2): 297-305.
4
Stephens DS, Edwards KM, Morris F, et al. Pili and outer membrane appendages on Neisseria meningitidis in the cerebrospinal fluid of an infant [J]. J Infect Dis, 1982, 146(4): 568.
5
Ren D, Nelson KL, Uchakin PN, et al. Characterization of extended co-culture of non-typeable Haemophilus influenzae with primary human respiratory tissues [J]. Exp Biol Med (Maywood), 2012, 237(5): 540-547.
6
Schwechheimer C, Kuehn MJ. Outer-membrane vesicles from gram-negative bacteria: biogenesis and functions [J]. Nat Rev Microbiol, 2015, 13(10): 605-619.
7
Bernadac A, Gavioli M, Lazzaroni JC, et al. Escherichia coli tol-pal mutants form outer membrane vesicles [J]. J Bacteriol, 1998, 180(18): 4872-4878.
8
Park JS, Lee WC, Yeo KJ, et al. Mechanism of anchoring of OmpA protein to the cell wall peptidoglycan of the gram-negative bacterial outer membrane [J]. FASEB J, 2012, 26(1): 219-228.
9
Moon DC, Choi CH, Lee JH, et al. Acinetobacter baumannii outer membrane protein a modulates the biogenesis of outer membrane vesicles [J]. J Microbiol, 2012, 50(1): 155-160.
10
Bauwens A, Kunsmann L, Karch H, et al. Antibiotic-mediated modulations of outer membrane vesicles in enterohemorrhagic Escherichia coli O104: H4 and O157: H7 [J]. Antimicrob Agents Chemother, 2017, 61(9): e00937-17.
11
Cahill BK, Seeley KW, Gutel D, et al. Klebsiella pneumoniae O antigen loss alters the outer membrane protein composition and the selective packaging of proteins into secreted outer membrane vesicles [J]. Microbiol Res, 2015, 180: 1-10.
12
Deo P, Chow SH, Hay ID, et al. Outer membrane vesicles from Neisseria gonorrhoeae target PorB to mitochondria and induce apoptosis [J]. PLoS Pathog, 2018, 14(3): e1006945.
13
Schwechheimer C, Kuehn MJ. Outer-membrane vesicles from gram-negative bacteria: biogenesis and functions [J]. Nat Rev Microbiol, 2015, 13(10): 605-619.
14
Kaparakis M, Turnbull L, Carneiro L, et al. Bacterial membrane vesicles deliver peptidoglycan to NOD1 in epithelial cells [J]. Cell Microbiol, 2010, 12(3): 372-385.
15
Dhital S, Deo P, Stuart I, et al. Bacterial outer membrane vesicles and host cell death signaling [J]. Trends Microbiol, 2021, 29(12): 1106-1116.
16
Turner L, Bitto NJ, Steer DL, et al. Helicobacter pylori outer membrane vesicle size determines their mechanisms of host cell entry and protein content [J]. Front Immunol, 2018, 9: 1466.
17
Zingl FG, Thapa HB, Scharf M, et al. Outer membrane vesicles of vibrio cholerae protect and deliver active cholera toxin to host cells via porin-dependent uptake [J]. mBio, 2021, 12(3): e0053421.
18
Tulkens J, Vergauwen G, Van Deun J, et al. Increased levels of systemic LPS-positive bacterial extracellular vesicles in patients with intestinal barrier dysfunction [J]. Gut, 2020, 69(1): 191-193.
19
Jang SC, Kim SR, Yoon YJ, et al. In vivo kinetic biodistribution of nano-sized outer membrane vesicles derived from bacteria [J]. Small, 2015, 11(4): 456-461.
20
Jones EJ, Booth C, Fonseca S, et al. The uptake, trafficking, and biodistribution of bacteroides thetaiotaomicron generated outer membrane vesicles [J]. Front Microbiol, 2020, 11: 57.
21
He Y, Shiotsu N, Uchida-Fukuhara Y, et al. Outer membrane vesicles derived from Porphyromonas gingivalis induced cell death with disruption of tight junctions in human lung epithelial cells [J]. Arch Oral Biol, 2020, 118: 104841.
22
Bauman SJ, Kuehn MJ. Purification of outer membrane vesicles from Pseudomonas aeruginosa and their activation of an IL-8 response [J]. Microbes Infect 2006, 8(9-10): 2400-2408.
23
Galka F, Wai SN, Kusch H, et al. Proteomic characterization of the whole secretome of Legionella pneumophila and functional analysis of outer membrane vesicles [J]. Infect Immun 2008, 76(5): 1825-1836.
24
Bielaszewska M, Marejkova M, Bauwens A, et al. Enterohemorrhagic Escherichia coli O157 outer membrane vesicles induce interleukin 8 production in human intestinal epithelial cells by signaling via Toll-like receptors TLR4 and TLR5 and activation of the nuclear factor NF-κB [J]. Int J Med Microbiol, 2018, 308(7): 882-889.
25
Soult MC, Lonergan NE, Shah B, et al. Outer membrane vesicles from pathogenic bacteria initiate an inflammatory response in human endothelial cells [J]. J Surg Res, 2013, 184(1): 458-466.
26
Lee J, Yoon YJ, Kim JH, et al. Outer membrane vesicles derived from Escherichia coli regulate neutrophil migration by induction of endothelial IL-8 [J]. Front Microbiol, 2018, 9: 2268.
27
Soult MC, Dobrydneva Y, Wahab KH, et al. Outer membrane vesicles alter inflammation and coagulation mediators [J]. J Surg Res, 2014, 192(1): 134-142.
28
Park KS, Lee J, Jang SC, et al. Pulmonary inflammation induced by bacteria-free outer membrane vesicles from Pseudomonas aeruginosa [J]. Am J Respir Cell Mol Biol, 2013, 49(4): 637-645.
29
Lapinet JA, Scapini P, Calzetti F, et al. Gene expression and production of tumor necrosis factor alpha, interleukin-1 beta (IL-1 beta), IL-8, macrophage inflammatory protein 1 alpha (MIP-1 alpha), MIP-1 beta, and gamma interferon-inducible protein 10 by human neutrophils stimulated with group B meningococcal outer membrane vesicles [J]. Infect Immun, 2000, 68(12): 6917-6923.
30
Davis JM, Carvalho HM, Rasmussen SB, et al. Cytotoxic necrotizing factor type 1 delivered by outer membrane vesicles of uropathogenic Escherichia coli attenuates polymorphonuclear leukocyte antimicrobial activity and chemotaxis [J]. Infect Immun, 2006, 74(8): 4401-4408.
31
Lappann M, Danhof S, Guenther F, et al. In vitro resistance mechanisms of Neisseria meningitidis against neutrophil extracellular traps [J]. Mol Microbiol, 2013, 89(3): 433-449.
32
Jung AL, Stoiber C, Herkt CE, et al. Legionella pneumophila-derived outer membrane vesicles promote bacterial replication in macrophages [J]. PLoS Pathog, 2016, 12(4): e1005592.
33
Winter J, Letley D, Rhead J, et al. Helicobacter pylori membrane vesicles stimulate innate pro-and anti-inflammatory responses and induce apoptosis in Jurkat T cells [J]. Infect Immun, 2014, 82(4): 1372-1381.
34
Tavano R, Franzoso S, Cecchini P, et al. The membrane expression of Neisseria meningitidis adhesin A (NadA) increases the proimmune effects of MenB OMVs on human macrophages, compared with NadA-OMVs, without further stimulating their proinflammatory activity on circulating monocytes [J]. J Leukoc Biol, 2009, 86(1): 143-153.
35
Mirlashari MR, Hoiby EA, Holst J, et al. Outer membrane vesicles from Neisseria meningitidis: effects on tissue factor and plasminogen activator inhibitor-2 production in human monocytes [J]. Thromb Res, 2001, 102(4): 375-380.
36
Vanaja SK, Russo AJ, Behl B, et al. Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase-11 activation [J]. Cell, 2016, 165(5): 1106-1119.
37
Bitto NJ, Baker PJ, Dowling JK, et al. Membrane vesicles from Pseudomonas aeruginosa activate the noncanonical inflammasome through caspase-5 in human monocytes [J]. Immunol Cell Biol, 2018, 96(10): 1120-1130.
38
Durand V, MacKenzie J, de Leon J, et al. Role of lipopolysaccharide in the induction of type Ⅰ interferon-dependent cross-priming and IL-10 production in mice by meningococcal outer membrane vesicles. Vaccine, 2009, 27(13): 1912–1922.
39
Alaniz RC, Deatherage BL, Lara JC, et al. Membrane vesicles are immunogenic facsimiles of Salmonella typhimurium that potently activate dendritic cells, prime B and T cell responses, and stimulate protective immunity in vivo [J]. J Immunol, 2007, 179(11): 7692-7701.
40
Shen Y, Giardino Torchia ML, Lawson GW, et al. Outer membrane vesicles of a human commensal mediate immune regulation and disease protection [J]. Cell Host Microbe, 2012, 12(4): 509-520.
41
Perl M, Lomas-Neira J, Venet F, et al. Pathogenesis of indirect (secondary) acute lung injury [J]. Expert Rev Respir Med, 2011, 5(1): 115-126.
42
Yu ZX, Ji MS, Yan J, et al. The ratio of Th17/Treg cells as a risk indicator in early acute respiratory distress syndrome [J]. Crit Care, 2015, 19: 82.
43
Yang D, Chen X, Wang J, et al. Dysregulated lung commensal bacteria drive interleukin-17B production to promote pulmonary fibrosis through their outer membrane vesicles [J]. Immunity, 2019, 50(3): 692-706.
44
Namork E, Brandtzaeg P. Fatal meningococcal septicaemia with "blebbing" meningococcus [J]. Lancet, 2002, 360(9347): 1741.
45
Yoo JY, Rho M, You YA, et al. 16S rRNA gene-based metagenomic analysis reveals differences in bacteria-derived extracellular vesicles in the urine of pregnant and non-pregnant women [J]. Exp Mol Med, 2016, 48: e208.
46
Park JY, Choi J, Lee Y, et al. Metagenome analysis of bodily microbiota in a mouse model of Alzheimer disease using bacteria-derived membrane vesicles in blood [J]. Exp Neurobiol, 2017, 26(6): 369-379.
[1] 江雅婷, 刘林峰, 沈辰曦, 陈奔, 刘婷, 龚裕强. 组织相关巨噬素3 保护肺血管内皮糖萼治疗急性呼吸窘迫综合征的机制研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 353-362.
[2] 李振翮, 魏长青, 甄国栋, 李振富. 脓毒症并发急性呼吸窘迫综合征患者血清S1P、Wnt5a变化及其临床意义[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 293-300.
[3] 杨茂宪, 沈鹏, 王倩倩, 吴旺, 沈永帅, 蒋禛, 徐龙生, 朱建刚, 刘倍倍. 吡啶甲酸镁联合地塞米松对急性呼吸窘迫综合征大鼠的治疗作用研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 196-203.
[4] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[5] 魏丁, 乔艳艳, 顾兴, 张燕, 李艳燕, 钱卫生, 潘蕾, 高永恒, 金发光. 体外膜肺氧合救治急性呼吸窘迫综合征不良预后危险因素分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 363-367.
[6] 杨东星, 沈鹏, 赵慧颖. 免疫球蛋白联合依库珠单抗治疗GBS 并发重度ARDS 患者一例[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 404-408.
[7] 王晓霞, 乌丹, 张江英, 乌雅罕, 郝颖楠, 斯日古楞. 《2023 年美国胸科学会关于成人急性呼吸窘迫综合征患者管理的临床实践指南更新》解读[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 338-343.
[8] 田学, 谢晖, 王瑞兰. 急性呼吸窘迫综合征相关肺纤维化的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 258-264.
[9] 李松栗, 黄蔚, 巢杰, 杨毅, 邱海波. 单核/巨噬细胞来源的细胞外囊泡在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 253-257.
[10] 杨永红, 杨莹, 齐红蕾, 刘福瑞, 朱金源. 单细胞测序在急性呼吸窘迫综合征中的应用进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 248-252.
[11] 倪韫晖, 杨毅, 袁雪燕, 邱海波. 胸壁加压在急性呼吸窘迫综合征中的应用和临床进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 243-247.
[12] 王永广, 朱鹏, 许千金, 甘桂芬, 石钟山, 潘纯. 急性呼吸窘迫综合征诊断标准亟需更新[J/OL]. 中华重症医学电子杂志, 2024, 10(02): 113-117.
[13] 刘悦, 潘纯. 急性呼吸窘迫综合征患者肌松剂滴定的必要性与可行性[J/OL]. 中华重症医学电子杂志, 2024, 10(02): 108-112.
[14] 史楠, 袁雪燕, 邱海波. 肺复张在急性呼吸窘迫综合征中的应用和临床进展[J/OL]. 中华重症医学电子杂志, 2024, 10(02): 118-126.
[15] 孙藏岚, 黄丽丽, 李小雨, 邱海波. 脂质组学在急性呼吸窘迫综合征中的应用和临床进展[J/OL]. 中华重症医学电子杂志, 2024, 10(02): 127-135.
阅读次数
全文


摘要