切换至 "中华医学电子期刊资源库"

第五届中国出版政府奖音像电子网络出版物奖提名奖

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中华重症医学电子杂志 ›› 2023, Vol. 09 ›› Issue (04) : 391 -395. doi: 10.3877/cma.j.issn.2096-1537.2023.04.009

综述

细菌外膜囊泡在ARDS中的功能及机制研究进展
陈菁, 黄蔚, 邱海波()   
  1. 210009 南京,江苏省重症医学重点实验室 东南大学附属中大医院重症医学科
  • 收稿日期:2022-12-15 出版日期:2023-11-28
  • 通信作者: 邱海波
  • 基金资助:
    国家自然科学基金重点项目(81930058); 江苏省重症医学重点实验室项目(BM2020004)

Advances on function and mechanism of bacterial outer membrane vesicles in acute respiratory distress syndrome

Jing Chen, Wei Huang, Haibo Qiu()   

  1. Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
  • Received:2022-12-15 Published:2023-11-28
  • Corresponding author: Haibo Qiu
引用本文:

陈菁, 黄蔚, 邱海波. 细菌外膜囊泡在ARDS中的功能及机制研究进展[J]. 中华重症医学电子杂志, 2023, 09(04): 391-395.

Jing Chen, Wei Huang, Haibo Qiu. Advances on function and mechanism of bacterial outer membrane vesicles in acute respiratory distress syndrome[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2023, 09(04): 391-395.

急性呼吸窘迫综合征(ARDS)是以失控炎症反应为发病机制及难治性低氧血症为主要临床特征的致命性疾病,感染是其最常见的诱因。外膜囊泡(OMVs)是革兰氏阴性菌分泌的纳米球形颗粒,载有大量细菌成分。近年来研究表明OMVs在细菌定植、毒力因子递送和调控宿主免疫反应中起着重要的作用。本文就OMVs在ARDS免疫反应中的功能及机制进行综述。

Acute respiratory distress syndrome (ARDS), a fatal disease characterized by uncontrolled immune response and refractory hypoxemia, is most commonly induced by infection. Outer membrane vesicles (OMVs) are nanoparticles produced by gram-negative bacteria via the extrusion of the outer membrane and can deliver a range of bacterial molecules to host cells. Recently it was found that OMVs play vital roles in bacterial colonization, delivery of virulence factors, and disease pathogenesis. This article reviews the formation and biological functions of OMVs, and the inflammatory and pathological mechanisms of OMVs in ARDS.

1
Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries [J]. JAMA, 2016, 315(8): 788-800.
2
Hendrix A, De Wever O. Systemically circulating bacterial extracellular vesicles: origin, fate, and function [J]. Trends Microbiol, 2022, 30(3): 213-216.
3
DeVoe IW, Gilchrist JE. Pili on meningococci from primary cultures of nasopharyngeal carriers and cerebrospinal fluid of patients with acute disease [J]. J Exp Med, 1975, 141(2): 297-305.
4
Stephens DS, Edwards KM, Morris F, et al. Pili and outer membrane appendages on Neisseria meningitidis in the cerebrospinal fluid of an infant [J]. J Infect Dis, 1982, 146(4): 568.
5
Ren D, Nelson KL, Uchakin PN, et al. Characterization of extended co-culture of non-typeable Haemophilus influenzae with primary human respiratory tissues [J]. Exp Biol Med (Maywood), 2012, 237(5): 540-547.
6
Schwechheimer C, Kuehn MJ. Outer-membrane vesicles from gram-negative bacteria: biogenesis and functions [J]. Nat Rev Microbiol, 2015, 13(10): 605-619.
7
Bernadac A, Gavioli M, Lazzaroni JC, et al. Escherichia coli tol-pal mutants form outer membrane vesicles [J]. J Bacteriol, 1998, 180(18): 4872-4878.
8
Park JS, Lee WC, Yeo KJ, et al. Mechanism of anchoring of OmpA protein to the cell wall peptidoglycan of the gram-negative bacterial outer membrane [J]. FASEB J, 2012, 26(1): 219-228.
9
Moon DC, Choi CH, Lee JH, et al. Acinetobacter baumannii outer membrane protein a modulates the biogenesis of outer membrane vesicles [J]. J Microbiol, 2012, 50(1): 155-160.
10
Bauwens A, Kunsmann L, Karch H, et al. Antibiotic-mediated modulations of outer membrane vesicles in enterohemorrhagic Escherichia coli O104: H4 and O157: H7 [J]. Antimicrob Agents Chemother, 2017, 61(9): e00937-17.
11
Cahill BK, Seeley KW, Gutel D, et al. Klebsiella pneumoniae O antigen loss alters the outer membrane protein composition and the selective packaging of proteins into secreted outer membrane vesicles [J]. Microbiol Res, 2015, 180: 1-10.
12
Deo P, Chow SH, Hay ID, et al. Outer membrane vesicles from Neisseria gonorrhoeae target PorB to mitochondria and induce apoptosis [J]. PLoS Pathog, 2018, 14(3): e1006945.
13
Schwechheimer C, Kuehn MJ. Outer-membrane vesicles from gram-negative bacteria: biogenesis and functions [J]. Nat Rev Microbiol, 2015, 13(10): 605-619.
14
Kaparakis M, Turnbull L, Carneiro L, et al. Bacterial membrane vesicles deliver peptidoglycan to NOD1 in epithelial cells [J]. Cell Microbiol, 2010, 12(3): 372-385.
15
Dhital S, Deo P, Stuart I, et al. Bacterial outer membrane vesicles and host cell death signaling [J]. Trends Microbiol, 2021, 29(12): 1106-1116.
16
Turner L, Bitto NJ, Steer DL, et al. Helicobacter pylori outer membrane vesicle size determines their mechanisms of host cell entry and protein content [J]. Front Immunol, 2018, 9: 1466.
17
Zingl FG, Thapa HB, Scharf M, et al. Outer membrane vesicles of vibrio cholerae protect and deliver active cholera toxin to host cells via porin-dependent uptake [J]. mBio, 2021, 12(3): e0053421.
18
Tulkens J, Vergauwen G, Van Deun J, et al. Increased levels of systemic LPS-positive bacterial extracellular vesicles in patients with intestinal barrier dysfunction [J]. Gut, 2020, 69(1): 191-193.
19
Jang SC, Kim SR, Yoon YJ, et al. In vivo kinetic biodistribution of nano-sized outer membrane vesicles derived from bacteria [J]. Small, 2015, 11(4): 456-461.
20
Jones EJ, Booth C, Fonseca S, et al. The uptake, trafficking, and biodistribution of bacteroides thetaiotaomicron generated outer membrane vesicles [J]. Front Microbiol, 2020, 11: 57.
21
He Y, Shiotsu N, Uchida-Fukuhara Y, et al. Outer membrane vesicles derived from Porphyromonas gingivalis induced cell death with disruption of tight junctions in human lung epithelial cells [J]. Arch Oral Biol, 2020, 118: 104841.
22
Bauman SJ, Kuehn MJ. Purification of outer membrane vesicles from Pseudomonas aeruginosa and their activation of an IL-8 response [J]. Microbes Infect 2006, 8(9-10): 2400-2408.
23
Galka F, Wai SN, Kusch H, et al. Proteomic characterization of the whole secretome of Legionella pneumophila and functional analysis of outer membrane vesicles [J]. Infect Immun 2008, 76(5): 1825-1836.
24
Bielaszewska M, Marejkova M, Bauwens A, et al. Enterohemorrhagic Escherichia coli O157 outer membrane vesicles induce interleukin 8 production in human intestinal epithelial cells by signaling via Toll-like receptors TLR4 and TLR5 and activation of the nuclear factor NF-κB [J]. Int J Med Microbiol, 2018, 308(7): 882-889.
25
Soult MC, Lonergan NE, Shah B, et al. Outer membrane vesicles from pathogenic bacteria initiate an inflammatory response in human endothelial cells [J]. J Surg Res, 2013, 184(1): 458-466.
26
Lee J, Yoon YJ, Kim JH, et al. Outer membrane vesicles derived from Escherichia coli regulate neutrophil migration by induction of endothelial IL-8 [J]. Front Microbiol, 2018, 9: 2268.
27
Soult MC, Dobrydneva Y, Wahab KH, et al. Outer membrane vesicles alter inflammation and coagulation mediators [J]. J Surg Res, 2014, 192(1): 134-142.
28
Park KS, Lee J, Jang SC, et al. Pulmonary inflammation induced by bacteria-free outer membrane vesicles from Pseudomonas aeruginosa [J]. Am J Respir Cell Mol Biol, 2013, 49(4): 637-645.
29
Lapinet JA, Scapini P, Calzetti F, et al. Gene expression and production of tumor necrosis factor alpha, interleukin-1 beta (IL-1 beta), IL-8, macrophage inflammatory protein 1 alpha (MIP-1 alpha), MIP-1 beta, and gamma interferon-inducible protein 10 by human neutrophils stimulated with group B meningococcal outer membrane vesicles [J]. Infect Immun, 2000, 68(12): 6917-6923.
30
Davis JM, Carvalho HM, Rasmussen SB, et al. Cytotoxic necrotizing factor type 1 delivered by outer membrane vesicles of uropathogenic Escherichia coli attenuates polymorphonuclear leukocyte antimicrobial activity and chemotaxis [J]. Infect Immun, 2006, 74(8): 4401-4408.
31
Lappann M, Danhof S, Guenther F, et al. In vitro resistance mechanisms of Neisseria meningitidis against neutrophil extracellular traps [J]. Mol Microbiol, 2013, 89(3): 433-449.
32
Jung AL, Stoiber C, Herkt CE, et al. Legionella pneumophila-derived outer membrane vesicles promote bacterial replication in macrophages [J]. PLoS Pathog, 2016, 12(4): e1005592.
33
Winter J, Letley D, Rhead J, et al. Helicobacter pylori membrane vesicles stimulate innate pro-and anti-inflammatory responses and induce apoptosis in Jurkat T cells [J]. Infect Immun, 2014, 82(4): 1372-1381.
34
Tavano R, Franzoso S, Cecchini P, et al. The membrane expression of Neisseria meningitidis adhesin A (NadA) increases the proimmune effects of MenB OMVs on human macrophages, compared with NadA-OMVs, without further stimulating their proinflammatory activity on circulating monocytes [J]. J Leukoc Biol, 2009, 86(1): 143-153.
35
Mirlashari MR, Hoiby EA, Holst J, et al. Outer membrane vesicles from Neisseria meningitidis: effects on tissue factor and plasminogen activator inhibitor-2 production in human monocytes [J]. Thromb Res, 2001, 102(4): 375-380.
36
Vanaja SK, Russo AJ, Behl B, et al. Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase-11 activation [J]. Cell, 2016, 165(5): 1106-1119.
37
Bitto NJ, Baker PJ, Dowling JK, et al. Membrane vesicles from Pseudomonas aeruginosa activate the noncanonical inflammasome through caspase-5 in human monocytes [J]. Immunol Cell Biol, 2018, 96(10): 1120-1130.
38
Durand V, MacKenzie J, de Leon J, et al. Role of lipopolysaccharide in the induction of type Ⅰ interferon-dependent cross-priming and IL-10 production in mice by meningococcal outer membrane vesicles. Vaccine, 2009, 27(13): 1912–1922.
39
Alaniz RC, Deatherage BL, Lara JC, et al. Membrane vesicles are immunogenic facsimiles of Salmonella typhimurium that potently activate dendritic cells, prime B and T cell responses, and stimulate protective immunity in vivo [J]. J Immunol, 2007, 179(11): 7692-7701.
40
Shen Y, Giardino Torchia ML, Lawson GW, et al. Outer membrane vesicles of a human commensal mediate immune regulation and disease protection [J]. Cell Host Microbe, 2012, 12(4): 509-520.
41
Perl M, Lomas-Neira J, Venet F, et al. Pathogenesis of indirect (secondary) acute lung injury [J]. Expert Rev Respir Med, 2011, 5(1): 115-126.
42
Yu ZX, Ji MS, Yan J, et al. The ratio of Th17/Treg cells as a risk indicator in early acute respiratory distress syndrome [J]. Crit Care, 2015, 19: 82.
43
Yang D, Chen X, Wang J, et al. Dysregulated lung commensal bacteria drive interleukin-17B production to promote pulmonary fibrosis through their outer membrane vesicles [J]. Immunity, 2019, 50(3): 692-706.
44
Namork E, Brandtzaeg P. Fatal meningococcal septicaemia with "blebbing" meningococcus [J]. Lancet, 2002, 360(9347): 1741.
45
Yoo JY, Rho M, You YA, et al. 16S rRNA gene-based metagenomic analysis reveals differences in bacteria-derived extracellular vesicles in the urine of pregnant and non-pregnant women [J]. Exp Mol Med, 2016, 48: e208.
46
Park JY, Choi J, Lee Y, et al. Metagenome analysis of bodily microbiota in a mouse model of Alzheimer disease using bacteria-derived membrane vesicles in blood [J]. Exp Neurobiol, 2017, 26(6): 369-379.
[1] 中华医学会器官移植学分会肺移植学组, 国家肺移植质控中心. 新型冠状病毒感染肺移植受者选择中国专家建议[J]. 中华移植杂志(电子版), 2023, 17(01): 13-16.
[2] 刘珂, 张婧娴, 王如刚. 肺超声纹理特征ARDS与心源性肺水肿的鉴别诊断意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(06): 892-894.
[3] 李伟, 卓剑, 黄川, 黄有攀. Lac、HO-1、sRAGE、CRP/ALB表达及脓毒症并发ARDS危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 514-516.
[4] 罗婷, 张实. 5种生物标志物对ARDS预后的预测分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 471-475.
[5] 饶林静, 罗皓梨, 钟山. 不同时长PPV在体外循环心脏大血管术后并发ARDS中的临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 575-577.
[6] 王秀清, 诸葛金科, 杨明星, 董文. ICIs治疗肺癌并发肺气肿致免疫相关性肺炎的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 400-402.
[7] 胡宗俊, 陈建国, 黄霞. ARDS机械通气继发肺栓塞危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 388-390.
[8] 张松涛, 李世金, 凌霄, 吴文辉. 胸部物理治疗联合布地奈德雾化对多发伤患者并发ARDS的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 373-375.
[9] 谭林, 蒲运刚, 朱顺, 杨希. 急性呼吸窘迫综合征患者血清FGF21、ANGPTL4、HO-1表达及其临床意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 227-229.
[10] 陈蕊, 杨洪娜, 方巍, 李鑫鑫, 李甜甜, 于孝义, 王艳雪, 李文玉. 血清与支气管肺泡灌洗液中细胞因子水平与肺内外ARDS的相关性研究[J]. 中华重症医学电子杂志, 2023, 09(03): 251-258.
[11] 吴梅清, 林瑾, 段美丽, 薛晓艳. 高密度脂蛋白水平对脓毒症相关的ARDS发生的影响[J]. 中华重症医学电子杂志, 2023, 09(02): 191-197.
[12] 陈栋玉, 潘纯, 杨毅. ARDS患者自主呼吸努力评估方法的研究进展[J]. 中华重症医学电子杂志, 2023, 09(01): 84-88.
[13] 王洁琼, 王慧霞, 赵慧颖, 安友仲. 血管紧张素转换酶2对人肺微血管内皮细胞炎性损伤的调控作用[J]. 中华重症医学电子杂志, 2023, 09(01): 78-83.
[14] 尹承芬, 徐磊. 再议俯卧位通气的时机[J]. 中华重症医学电子杂志, 2023, 09(01): 9-13.
[15] 夏金根, 胡诗雨. 体外二氧化碳清除技术的重症应用场景[J]. 中华重症医学电子杂志, 2023, 09(01): 40-45.
阅读次数
全文


摘要